Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Immuno-fibrotic drivers of impaired lung function in post-COVID-19 syndrome.

View / Download
325.0 bytes
Date
2021-02-06
Authors
Chun, Hyung J
Coutavas, Elias
Pine, Alexander
Lee, Alfred I
Yu, Vanessa
Shallow, Marcus
Giovacchini, Coral X
Mathews, Anne
Stephenson, Brian
Que, Loretta G
Lee, Patty J
Kraft, Bryan D
Show More
(12 total)
Repository Usage Stats
74
views
5
downloads
Abstract
Introduction: Subjects recovering from COVID-19 frequently experience persistent respiratory ailments; however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity. Methods: We performed a prospective cohort study of subjects with persistent symptoms after recovering from acute COVID-19 illness, collecting clinical data, pulmonary function tests, and blood. Plasma samples were used for multiplex profiling of circulating factors associated with inflammation, metabolism, angiogenesis, and fibrosis. Results: Sixty-one subjects were enrolled across two academic medical centers at a median of 9 weeks (interquartile range 6-10) after COVID-19 illness: n=13 subjects (21%) mild/non-hospitalized, n=30 (49%) hospitalized/non-critical, and n=18 subjects (30%) hospitalized/intensive care ("ICU"). Fifty-three subjects (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P<0.05), but did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered subjects by past COVID-19 severity. Lipocalin 2 (LCN2), matrix metalloproteinase-7 (MMP-7), and hepatocyte growth factor (HGF) identified by the model were significantly higher in the ICU group (P<0.05) and inversely correlated with FVC and DLCO (P<0.05). Conclusions: Subjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets. Funding: The study was funded in part by the NHLBI (K08HL130557 to BDK and R01HL142818 to HJC), the DeLuca Foundation Award (AP), a donation from Jack Levin to the Benign Hematology Program at Yale, and Divisional/Departmental funds from Duke University.
Type
Journal article
Permalink
https://hdl.handle.net/10161/22423
Published Version (Please cite this version)
10.1101/2021.01.31.21250870
Publication Info
Chun, Hyung J; Coutavas, Elias; Pine, Alexander; Lee, Alfred I; Yu, Vanessa; Shallow, Marcus; ... Kraft, Bryan D (2021). Immuno-fibrotic drivers of impaired lung function in post-COVID-19 syndrome. medRxiv. 10.1101/2021.01.31.21250870. Retrieved from https://hdl.handle.net/10161/22423.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Kraft

Bryan David Kraft

Adjunct Assistant Professor in the Department of Medicine
Dr. Kraft has a wide variety of clinical and research interests, including sepsis, pneumonia, and acute respiratory distress syndrome (ARDS), and has special expertise in rare lung diseases such as pulmonary fibrosis and pulmonary alveolar proteinosis (PAP). PAP can be congenital, hereditary, autoimmune, or due to occupational exposures (e.g. dusts, fibers, silica). Dr. Kraft performs whole lung lavage (WLL) at Duke in a state-of-the art hyperbaric chamber within the Duke C
Lee

Patty J Lee

Professor of Medicine
My overall research interests are in acute and chronic oxidant-induced lung injury and repair, specifically the distinct roles of stress-response pathways depending on the lung compartment or cell type(s) involved and their regulation by the immune system.  Using models of inhaled toxins, such as high oxygen concentrations, cigarette smoke, and microbes, we discovered previously unrecognized mechanistic roles for innate immune receptors, TLR4-NLRP3, mitochondrial health and cell fate, su
Que

Loretta Georgina Que

Professor of Medicine
My research interests focus on studying the role of nitric oxide and related enzymes in the pathogenesis of lung disease, specifically that caused by nitrosative/oxidative stress. Proposed studies are performed in cell culture and applied to animal models of disease, then examined in human disease where relevant. It is our hope that by better understanding the role of NO and reactive nitrogen species in mediating inflammation, and regulating cell signaling, that we will not only help to unr
Stephenson

Brian Stephenson

Assistant Professor of Medicine
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University