Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A conjoined universal helper epitope can unveil antitumor effects of a neoantigen vaccine targeting an MHC class I-restricted neoepitope.

Thumbnail
View / Download
1.2 Mb
Date
2021-01-18
Authors
Swartz, Adam M
Congdon, Kendra L
Nair, Smita K
Li, Qi-Jing
Herndon, James E
Suryadevara, Carter M
Riccione, Katherine A
Archer, Gary E
Norberg, Pamela K
Sanchez-Perez, Luis A
Sampson, John H
Show More
(11 total)
Repository Usage Stats
30
views
8
downloads
Abstract
Personalized cancer vaccines targeting neoantigens arising from somatic missense mutations are currently being evaluated for the treatment of various cancers due to their potential to elicit a multivalent, tumor-specific immune response. Several cancers express a low number of neoantigens; in these cases, ensuring the immunotherapeutic potential of each neoantigen-derived epitope (neoepitope) is crucial. In this study, we discovered that therapeutic vaccines targeting immunodominant major histocompatibility complex (MHC) I-restricted neoepitopes require a conjoined helper epitope in order to induce a cytotoxic, neoepitope-specific CD8+ T-cell response. Furthermore, we show that the universally immunogenic helper epitope P30 can fulfill this requisite helper function. Remarkably, conjoined P30 was able to unveil immune and antitumor responses to subdominant MHC I-restricted neoepitopes that were, otherwise, poorly immunogenic. Together, these data provide key insights into effective neoantigen vaccine design and demonstrate a translatable strategy using a universal helper epitope that can improve therapeutic responses to MHC I-restricted neoepitopes.
Type
Journal article
Permalink
https://hdl.handle.net/10161/22510
Published Version (Please cite this version)
10.1038/s41541-020-00273-5
Publication Info
Swartz, Adam M; Congdon, Kendra L; Nair, Smita K; Li, Qi-Jing; Herndon, James E; Suryadevara, Carter M; ... Sampson, John H (2021). A conjoined universal helper epitope can unveil antitumor effects of a neoantigen vaccine targeting an MHC class I-restricted neoepitope. NPJ vaccines, 6(1). pp. 12. 10.1038/s41541-020-00273-5. Retrieved from https://hdl.handle.net/10161/22510.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Archer

Gerald Edward Archer

Assistant Professor of Neurosurgery
My current research focus involves the delivery of therapeutic agents for the treatment of central nervous system neoplasia. Utilizing athymic rat models of central nervous system neoplasia I am investigating compartmental approaches to increase therapeutic efficacy of chemotherapeutic agents and immunoconjugates. Preclinical testing in athymic rats of intrathecal administration of melphalan and 4-hydroperoxycyclophosphamide have resulted in the FDA granting investigational new drug prot
Herndon

James Emmett Herndon II

Professor of Biostatistics & Bioinformatics
Current research interests have application to the design and analysis of cancer clinical trials. Specifically, interests include the use of time-dependent covariables within survival models, the design of phase II cancer clinical trials which minimize some of the logistical problems associated with their conduct, and the analysis of longitudinal studies with informative censoring (in particular, quality of life studies of patients with advanced cancer).
Li

Qi-Jing Li

Associate Professor of Immunology
Recent clinical success in cancer immunotherapy, including immune checkpoint blockades and chimeric antigen receptor T cells, have settled a long-debated question in the field: whether tumors can be recognized and eliminated by our own immune system, specifically, the T lymphocyte. Meanwhile, current limitations of these advanced treatments pinpoint fundamental knowledge deficits in basic T cell biology, especially in the context of tumor-carrying patients. Aiming to develop new immunotherapi
Nair

Smita K Nair

Professor in Surgery
I have 22 years of experience in the field of cancer vaccines and immunotherapy and I am an accomplished T cell immunologist. Laboratory website:https://surgery.duke.edu/immunology-inflammation-immunotherapy-laboratory Current projects in the Nair Laboratory:1] Dendritic cell vaccines using tumor-antigen encoding RNA (mRNA, total tumor RNA, amplified tumor mRNA)<br
Sampson

John Howard Sampson

Robert H., M.D. and Gloria Wilkins Professor of Neurosurgery, in the School of Medicine
Current research activities involve the immunotherapeutic targeting of a tumor-specific mutation in the epidermal growth factor receptor. Approaches used to target this tumor-specific epitope include unarmed and radiolabeled antibody therapy and cell mediated approaches using peptide vaccines and dendritic cells. Another area of interest involves drug delivery to brain tumors. Translational and clinical work is carried out in this area to formulate the relationship between various direct intratu
More Authors
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University