Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis.

Thumbnail
View / Download
1.6 Mb
Date
2021-03
Authors
Lee, Whasil
Nims, Robert J
Savadipour, Alireza
Zhang, Qiaojuan
Leddy, Holly A
Liu, Fang
McNulty, Amy L
Chen, Yong
Guilak, Farshid
Liedtke, Wolfgang B
Show More
(10 total)
Repository Usage Stats
56
views
12
downloads
Abstract
Osteoarthritis (OA) is a painful and debilitating condition of synovial joints without any disease-modifying therapies [A. M. Valdes, T. D. Spector, Nat. Rev. Rheumatol. 7, 23-32 (2011)]. We previously identified mechanosensitive PIEZO channels, PIEZO1 and PIEZO2, both expressed in articular cartilage, to function in chondrocyte mechanotransduction in response to injury [W. Lee et al., Proc. Natl. Acad. Sci. U.S.A. 111, E5114-E5122 (2014); W. Lee, F. Guilak, W. Liedtke, Curr. Top. Membr. 79, 263-273 (2017)]. We therefore asked whether interleukin-1-mediated inflammatory signaling, as occurs in OA, influences Piezo gene expression and channel function, thus indicative of maladaptive reprogramming that can be rationally targeted. Primary porcine chondrocyte culture and human osteoarthritic cartilage tissue were studied. We found that interleukin-1α (IL-1α) up-regulated Piezo1 in porcine chondrocytes. Piezo1 expression was significantly increased in human osteoarthritic cartilage. Increased Piezo1 expression in chondrocytes resulted in a feed-forward pathomechanism whereby increased function of Piezo1 induced excess intracellular Ca2+ at baseline and in response to mechanical deformation. Elevated resting state Ca2+ in turn rarefied the F-actin cytoskeleton and amplified mechanically induced deformation microtrauma. As intracellular substrates of this OA-related inflammatory pathomechanism, in porcine articular chondrocytes exposed to IL-1α, we discovered that enhanced Piezo1 expression depended on p38 MAP-kinase and transcription factors HNF4 and ATF2/CREBP1. CREBP1 directly bound to the proximal PIEZO1 gene promoter. Taken together, these signaling and genetic reprogramming events represent a detrimental Ca2+-driven feed-forward mechanism that can be rationally targeted to stem the progression of OA.
Type
Journal article
Subject
PIEZO1
Piezo1 gene regulation
interleukin-1
osteoarthritis
Permalink
https://hdl.handle.net/10161/22727
Published Version (Please cite this version)
10.1073/pnas.2001611118
Publication Info
Lee, Whasil; Nims, Robert J; Savadipour, Alireza; Zhang, Qiaojuan; Leddy, Holly A; Liu, Fang; ... Liedtke, Wolfgang B (2021). Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 118(13). pp. e2001611118-e2001611118. 10.1073/pnas.2001611118. Retrieved from https://hdl.handle.net/10161/22727.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Chen

Yong Chen

Associate Professor in Neurology
Dr. Yong Chen is an Associate Professor of Neurology at the Duke University School of Medicine.  He is also affiliated with Duke Anesthesiology-Center for Translational Pain Medicine (CTPM) and Duke-Pathology. The Chen lab mainly studies sensory neurobiology of pain and itch, with a focus on TRP ion channels and neural circuits. The main objective of our lab is to identify molecular and cellular mechanisms underlying chronic pain and chronic-disease associated itch, using a combi
Liedtke

Wolfgang Bernhard Liedtke

Adjunct Professor in the Department of Neurology
Research Interests in the Liedtke-Lab: Pain/ nociception Sensory transduction and -transmission TRP ion channels Water and salt equilibrium regulated by the central nervous system Visit the lab's website, download papers and read Dr. Liedtke's CV here.
McNulty

Amy Lynn McNulty

Associate Professor in Orthopaedic Surgery
The McNulty Lab is working to develop strategies to prevent osteoarthritis and to promote tissue repair and regeneration following joint injury. In order to accomplish this, we are working in three main areas.  1) We are working to understand the pathways that are activated by normal and injurious mechanical loading of cartilage and meniscus and how these mechanotransduction pathways are altered during aging, injury, and tissue degeneration. A greater understanding of alterations in mech
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University