Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vacuole Formation Guides the Regenerative Path of the Zebrafish Notochord

Thumbnail
View / Download
4.2 Mb
Date
2021
Author
Garcia, Jamie
Advisors
Bagnat, Michel
Poss, Kenneth
Repository Usage Stats
99
views
26
downloads
Abstract

The notochord is a defining feature of our phylum Chordata and has critical roles in human development that are highly conserved in vertebrates. The notochord functions as a hydrostatic scaffold to provide structural rigidity needed for anterior-posterior axis elongation and later for proper spine development. The notochord’s mechanical properties depend on its unique structure. In zebrafish, the notochord consists of a core of giant vacuolated cells surrounded by an epithelial -like sheath. Previous research from our lab has shown that during early development, the notochord vacuole rapidly accumulates fluid and expands within the inelastic notochord sheath. In this work we first investigated the molecular processes by which large vacuolated cells of the notochord maintain integrity while being subjected to a significant amount of stress. We determined that caveolae play a mechanoprotective role in the zebrafish notochord and are crucial in preserving notochord integrity. Upon loss of caveolae, the vacuolated cell collapses at discrete positions under the mechanical strain of locomotion then sheath cells invade the inner notochord and differentiate into vacuolated cells thereby restoring notochord function and allowing normal spine development. Findings from our caveolae work next allowed us to investigate the arrangement of vacuolated cells within the zebrafish notochord. During notochord morphogenesis, the vacuolated cells in wild-type zebrafish arrange themselves in a staircase pattern. However, in both caveolae and vacuole mutants, this pattern is disrupted. We investigated the basis of this pattern and found that it can be described by simple physical principles. We modeled the arrangement of vacuolated cells using a system composed of silicone tubing and sodium polyacrylate jelly beads demonstrating that what we observe in vivo can be described by the theory developed for the packing of spheres in cylinders. We determined that the organization of vacuolated cells within the zebrafish notochord is controlled by the density of fluid filled vacuoles and the diameter of the notochord tube. Lastly, based on our finding that sheath cells of the notochord can form de novo vacuoles, we wanted to identify key factors contributing to notochord vacuole biogenesis and integrity. We used a two-pronged transcriptomics and proteomics approach to identify proteins involved in de novo vacuole formation. We find that loss of a protein previously linked to lysosome related organelle function, Lyst, leads to fragmentation of notochord vacuoles and impaired axis elongation. Interestingly, upon injury of the notochord, sheath cells fail to form a fully inflated vacuole and continue to grow outside of notochord boundaries, forming a tumor-like mass. The tumor-like mass appears very similar to a rare tumor type called chordoma, which is characterized by overgrowth of intervertebral disc tissue. This work suggests that Lyst is important for notochord vacuole biogenesis in zebrafish and may play an important role in chordoma formation. Our work has elucidated novel mechanisms of cell surface integrity and has shown how proper vacuolated cell inflation leads to a structurally intact notochord. Additionally, we have demonstrated the remarkable regenerative capacity of the zebrafish notochord and identified potential regulators of both vacuole biogenesis and chordoma formation.

Description
Dissertation
Type
Dissertation
Department
Cell Biology
Subject
Cellular biology
Developmental biology
caveolae
intervertebral disc
notochord
zebrafish
Permalink
https://hdl.handle.net/10161/22970
Citation
Garcia, Jamie (2021). Vacuole Formation Guides the Regenerative Path of the Zebrafish Notochord. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/22970.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University