Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of Material Properties and Fracture Properties on the Crack Nucleation and Growth

Thumbnail
View / Download
5.1 Mb
Date
2021
Author
Zeng, Bo
Advisor
Dolbow, John
Repository Usage Stats
52
views
36
downloads
Abstract

In this thesis, we studied the influence of spatial variations in the fracture property and the elastic property on the resulting crack patterns during soil desiccation. Young's modulus is selected as the representative elastic property and the fracture toughness is selected as that for the fracture property. Their well-defined spatially fluctuated random fields are the input of the phase-field fracture simulation, and the resulting damage field is the output. Various postprocessing of the damage field were carried out to analyze the resulting fields. After comparing the morphology of the cracks and fragment size distributions, a preliminary guess was that the two inputs have very close influence on the output. Then the Pearson correlation coefficient, as a first try of sensitivity analysis, also gave an indistinguishable correlation number between the two. A more rigorous approach with highly isolated sensitivity quantity was needed, which brought us to the Sobol' indice based on polynomial chaos expansion, a global sensitivity analysis measure which accounts for the variation of output into the variation of each input and any combination of input.

Description
Master's thesis
Type
Master's thesis
Department
Mechanical Engineering and Materials Science
Subject
Mechanical engineering
finite element method
phase-field fracture model
random field
soil desiccation
uncertainty quantification
Permalink
https://hdl.handle.net/10161/23137
Citation
Zeng, Bo (2021). Influence of Material Properties and Fracture Properties on the Crack Nucleation and Growth. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/23137.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University