Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aging Is Associated With Impaired Activation of Protein Homeostasis-Related Pathways After Cardiac Arrest in Mice.

Thumbnail
View / Download
2.6 Mb
Date
2018-09
Authors
Shen, Yuntian
Yan, Baihui
Zhao, Qiang
Wang, Zhuoran
Wu, Jiangbo
Ren, Jiafa
Wang, Wei
Yu, Shu
Sheng, Huaxin
Crowley, Steven D
Ding, Fei
Paschen, Wulf
Yang, Wei
Show More
(13 total)
Repository Usage Stats
51
views
4
downloads
Abstract
Background The mechanisms underlying worse outcome at advanced age after cardiac arrest ( CA ) and resuscitation are not well understood. Because protein homeostasis (proteostasis) is essential for cellular and organismal health, but is impaired after CA , we investigated the effects of age on proteostasis-related prosurvival pathways activated after CA . Methods and Results Young (2-3 months old) and aged (21-22 months old) male C57Bl/6 mice were subjected to CA and cardiopulmonary resuscitation ( CPR ). Functional outcome and organ damage were evaluated by assessing neurologic deficits, histological features, and creatinine level. CA / CPR -related changes in small ubiquitin-like modifier conjugation, ubiquitination, and the unfolded protein response were analyzed by measuring mRNA and protein levels in the brain, kidney, and spinal cord. Thiamet-G was used to increase O-linked β-N-acetylglucosamine modification. After CA / CPR , aged mice had trended lower survival rates, more severe tissue damage in the brain and kidney, and poorer recovery of neurologic function compared with young mice. Furthermore, small ubiquitin-like modifier conjugation, ubiquitination, unfolded protein response, and O-linked β-N-acetylglucosamine modification were activated after CA / CPR in young mice, but their activation was impaired in aged mice. Finally, pharmacologically increasing O-linked β-N-acetylglucosamine modification after CA improved outcome. Conclusions Results suggest that impaired activation of prosurvival pathways contributes to worse outcome after CA / CPR in aged mice because restoration of proteostasis is critical to the survival of cells stressed by ischemia. Therefore, a pharmacologic intervention that targets aging-related impairment of proteostasis-related pathways after CA / CPR may represent a promising therapeutic strategy.
Type
Journal article
Subject
Kidney
Brain
Spinal Cord
Animals
Mice
Heart Arrest
Acetylglucosamine
Small Ubiquitin-Related Modifier Proteins
Cardiopulmonary Resuscitation
Recovery of Function
Aging
Ubiquitination
Unfolded Protein Response
Proteostasis
Permalink
https://hdl.handle.net/10161/23246
Published Version (Please cite this version)
10.1161/jaha.118.009634
Publication Info
Shen, Yuntian; Yan, Baihui; Zhao, Qiang; Wang, Zhuoran; Wu, Jiangbo; Ren, Jiafa; ... Yang, Wei (2018). Aging Is Associated With Impaired Activation of Protein Homeostasis-Related Pathways After Cardiac Arrest in Mice. Journal of the American Heart Association, 7(17). pp. e009634. 10.1161/jaha.118.009634. Retrieved from https://hdl.handle.net/10161/23246.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Wulf Paschen

Professor in Anesthesiology
My research interests are understanding the mechanisms underlying induction of cell death induced by a severe form of cellular stress. I am particularly interested in the role of the endoplasmic reticulum in the pathological process induced by transient cerebral ischemia and culminating in neuronal cell death. This pathological process is associated with an irreversible suppression of protein synthese that limits the ability of cells to withstand ischemia-induced impairment of endoplasmic r
Sheng

Huaxin Sheng

Associate Professor in Anesthesiology
We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral is
Yang

Wei Yang

Associate Professor in Anesthesiology
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University