Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia.

Thumbnail
View / Download
509.5 Kb
Date
2014-03
Authors
Iwabuchi, Masahiro
Sheng, Huaxin
Thompson, J Will
Wang, Liangli
Dubois, Laura G
Gooden, David
Moseley, Marthur
Paschen, Wulf
Yang, Wei
Show More
(9 total)
Repository Usage Stats
23
views
5
downloads
Abstract
Ubiquitylation is a posttranslational protein modification that modulates various cellular processes of key significance, including protein degradation and DNA damage repair. In animals subjected to transient cerebral ischemia, ubiquitin-conjugated proteins accumulate in Triton-insoluble aggregates. Although this process is widely considered to modulate the fate of postischemic neurons, few attempts have been made to characterize the ubiquitin-modified proteome in these aggregates. We performed proteomics analyses to identify ubiquitylated proteins in postischemic aggregates. Mice were subjected to 10 minutes of forebrain ischemia and 4 hours of reperfusion. The hippocampi were dissected, aggregates were isolated, and trypsin-digested after spiking with GG-BSA as internal standard. K-ɛ-GG-containing peptides were immunoprecipitated and analyzed by label-free quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. We identified 1,664 peptides to 520 proteins containing at least one K-ɛ-GG. Sixty-six proteins were highly ubiquitylated, with 10 or more K-ɛ-GG peptides. Based on selection criteria of greater than fivefold increase and P<0.001, 763 peptides to 272 proteins were highly enriched in postischemic aggregates. These included proteins involved in important neuronal functions and signaling pathways that are impaired after ischemia. Results of this study could serve as an important platform to uncover the mechanisms linking insoluble ubiquitin aggregates to the functions of postischemic neurons.
Type
Journal article
Subject
Prosencephalon
Animals
Mice, Inbred C57BL
Mice
Ischemic Attack, Transient
Peptide Fragments
Proteome
Ubiquitin
Microscopy, Confocal
Blotting, Western
Chromatography, Liquid
Proteomics
Male
Tandem Mass Spectrometry
Ubiquitination
Ubiquitinated Proteins
Permalink
https://hdl.handle.net/10161/23272
Published Version (Please cite this version)
10.1038/jcbfm.2013.210
Publication Info
Iwabuchi, Masahiro; Sheng, Huaxin; Thompson, J Will; Wang, Liangli; Dubois, Laura G; Gooden, David; ... Yang, Wei (2014). Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 34(3). pp. 425-432. 10.1038/jcbfm.2013.210. Retrieved from https://hdl.handle.net/10161/23272.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Moseley

Martin Arthur Moseley III

Adjunct Professor in the Department of Cell Biology

Wulf Paschen

Professor in Anesthesiology
My research interests are understanding the mechanisms underlying induction of cell death induced by a severe form of cellular stress. I am particularly interested in the role of the endoplasmic reticulum in the pathological process induced by transient cerebral ischemia and culminating in neuronal cell death. This pathological process is associated with an irreversible suppression of protein synthese that limits the ability of cells to withstand ischemia-induced impairment of endoplasmic r
Sheng

Huaxin Sheng

Associate Professor in Anesthesiology
We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral is
Thompson

J. Will Thompson

Adjunct Assistant Professor in the Department of Pharmacology & Cancer Biology
Dr. Thompson's research focuses on the development and deployment of proteomics and metabolomics mass spectrometry techniques for the analysis of biological systems. He served as the Assistant Director of the Proteomics and Metabolomics Shared Resource in the Duke School of Medicine from 2007-2021. He currently maintains collaborations in metabolomics and proteomics research at Duke, and develops new tools for chemical analysis as a Princi

Wei Yang

Associate Professor in Anesthesiology
More Authors
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University