Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways.

Thumbnail
View / Download
10.0 Mb
Date
2014-04
Authors
Yang, Wei
Sheng, Huaxin
Thompson, J Will
Zhao, Shengli
Wang, Liangli
Miao, Pei
Liu, Xiaozhi
Moseley, M Arthur
Paschen, Wulf
Show More
(9 total)
Repository Usage Stats
51
views
16
downloads
Abstract
<h4>Background and purpose</h4>Small ubiquitin-like modifier (SUMO) conjugation is a post-translational modification associated with many human diseases. Characterization of the SUMO-modified proteome is pivotal to define the mechanistic link between SUMO conjugation and such diseases. This is particularly evident for SUMO2/3 conjugation, which is massively activated after brain ischemia/stroke, and is believed to be a protective response. The purpose of this study was to perform a comprehensive analysis of the SUMO3-modified proteome regulated by brain ischemia using a novel SUMO transgenic mouse.<h4>Methods</h4>To enable SUMO proteomics analysis in vivo, we generated transgenic mice conditionally expressing tagged SUMO1-3 paralogues. Transgenic mice were subjected to 10 minutes forebrain ischemia and 1 hour of reperfusion. SUMO3-conjugated proteins were enriched by anti-FLAG affinity purification and analyzed by liquid chromatography-tandem mass spectrometry.<h4>Results</h4>Characterization of SUMO transgenic mice demonstrated that all 3 tagged SUMO paralogues were functionally active, and expression of exogenous SUMOs did not modify the endogenous SUMOylation machinery. Proteomics analysis identified 112 putative SUMO3 substrates of which 91 candidates were more abundant in the ischemia group than the sham group. Data analysis revealed processes/pathways with putative neuroprotective functions, including glucocorticoid receptor signaling, RNA processing, and SUMOylation-dependent ubiquitin conjugation.<h4>Conclusions</h4>The identified proteins/pathways modulated by SUMOylation could be the key to understand the mechanisms linking SUMOylation to neuroprotection, and thus provide new promising targets for therapeutic interventions. The new transgenic mouse will be an invaluable platform for analyzing the SUMO-modified proteome in models of human disorders and thereby help to mechanistically link SUMOylation to the pathological processes.
Type
Journal article
Subject
Animals
Mice, Transgenic
Mice
Brain Ischemia
Ischemic Attack, Transient
Proteome
Ubiquitins
Small Ubiquitin-Related Modifier Proteins
SUMO-1 Protein
Proteomics
RNA Processing, Post-Transcriptional
Mass Spectrometry
Stroke
Permalink
https://hdl.handle.net/10161/23276
Published Version (Please cite this version)
10.1161/strokeaha.113.004315
Publication Info
Yang, Wei; Sheng, Huaxin; Thompson, J Will; Zhao, Shengli; Wang, Liangli; Miao, Pei; ... Paschen, Wulf (2014). Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways. Stroke, 45(4). pp. 1115-1122. 10.1161/strokeaha.113.004315. Retrieved from https://hdl.handle.net/10161/23276.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Moseley

Martin Arthur Moseley III

Adjunct Professor in the Department of Cell Biology

Wulf Paschen

Professor in Anesthesiology
My research interests are understanding the mechanisms underlying induction of cell death induced by a severe form of cellular stress. I am particularly interested in the role of the endoplasmic reticulum in the pathological process induced by transient cerebral ischemia and culminating in neuronal cell death. This pathological process is associated with an irreversible suppression of protein synthese that limits the ability of cells to withstand ischemia-induced impairment of endoplasmic r
Sheng

Huaxin Sheng

Associate Professor in Anesthesiology
We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral is
Thompson

J. Will Thompson

Adjunct Assistant Professor in the Department of Pharmacology & Cancer Biology
Dr. Thompson's research focuses on the development and deployment of proteomics and metabolomics mass spectrometry techniques for the analysis of biological systems. He served as the Assistant Director of the Proteomics and Metabolomics Shared Resource in the Duke School of Medicine from 2007-2021. He currently maintains collaborations in metabolomics and proteomics research at Duke, and develops new tools for chemical analysis as a Princi
Yang

Wei Yang

Associate Professor in Anesthesiology
More Authors
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University