Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

Thumbnail
View / Download
916.5 Kb
Date
2014-05
Authors
Clopath, Claudia
Badura, Aleksandra
De Zeeuw, Chris I
Brunel, Nicolas
Repository Usage Stats
25
views
2
downloads
Abstract
Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions.
Type
Journal article
Subject
Cerebellum
Purkinje Cells
Synapses
Animals
Mice, Inbred C57BL
Mice, Transgenic
Mice
Mice, Mutant Strains
Symporters
Receptors, GABA
Eye Movements
Learning
Adaptation, Physiological
Reflex, Vestibulo-Ocular
Mutation
Nonlinear Dynamics
Models, Biological
Computer Simulation
Male
Permalink
https://hdl.handle.net/10161/23358
Published Version (Please cite this version)
10.1523/jneurosci.2791-13.2014
Publication Info
Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; & Brunel, Nicolas (2014). A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(21). pp. 7203-7215. 10.1523/jneurosci.2791-13.2014. Retrieved from https://hdl.handle.net/10161/23358.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Brunel

Nicolas Brunel

Professor of Neurobiology
We use theoretical models of brain systems to investigate how they process and learn information from their inputs. Our current work focuses on the mechanisms of learning and memory, from the synapse to the network level, in collaboration with various experimental groups. Using methods fromstatistical physics, we have shown recently that the synapticconnectivity of a network that maximizes storage capacity reproducestwo key experimentally observed features: low connection proba
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University