Show simple item record

Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains

dc.contributor.author Aguareles, M
dc.contributor.author Chapman, SJ
dc.contributor.author Witelski, T
dc.date.accessioned 2021-06-30T13:50:37Z
dc.date.available 2021-06-30T13:50:37Z
dc.date.issued 2020-12-15
dc.identifier.issn 0167-2789
dc.identifier.issn 1872-8022
dc.identifier.uri https://hdl.handle.net/10161/23398
dc.description.abstract Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.
dc.language en
dc.publisher Elsevier BV
dc.relation.ispartof Physica D: Nonlinear Phenomena
dc.relation.isversionof 10.1016/j.physd.2020.132699
dc.subject Law of motion
dc.subject Asymptotic
dc.subject Pattern formation
dc.subject Nonlinear oscillation
dc.subject Spiral waves
dc.subject Complex Ginzburg-Landau equation
dc.title Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
dc.type Journal article
duke.contributor.id Witelski, T|0205263
dc.date.updated 2021-06-30T13:50:36Z
pubs.begin-page 132699
pubs.end-page 132699
pubs.organisational-group Trinity College of Arts & Sciences
pubs.organisational-group Mathematics
pubs.organisational-group Pratt
pubs.organisational-group Duke
pubs.organisational-group Pratt School of Engineering
pubs.publication-status Published
pubs.volume 414
duke.contributor.orcid Witelski, T|0000-0003-0789-9859


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record