dc.contributor.author |
Aguareles, M |
|
dc.contributor.author |
Chapman, SJ |
|
dc.contributor.author |
Witelski, T |
|
dc.date.accessioned |
2021-06-30T13:50:37Z |
|
dc.date.available |
2021-06-30T13:50:37Z |
|
dc.date.issued |
2020-12-15 |
|
dc.identifier.issn |
0167-2789 |
|
dc.identifier.issn |
1872-8022 |
|
dc.identifier.uri |
https://hdl.handle.net/10161/23398 |
|
dc.description.abstract |
Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation
in bounded domains are considered. We investigate the effect of the boundaries on
spiral motion under homogeneous Neumann boundary conditions, for small values of the
twist parameter q. We derive explicit laws of motion for rectangular domains and we
show that the motion of spirals becomes exponentially slow when the twist parameter
exceeds a critical value depending on the size of the domain. The oscillation frequency
of multiple-spiral patterns is also analytically obtained.
|
|
dc.language |
en |
|
dc.publisher |
Elsevier BV |
|
dc.relation.ispartof |
Physica D: Nonlinear Phenomena |
|
dc.relation.isversionof |
10.1016/j.physd.2020.132699 |
|
dc.subject |
Law of motion |
|
dc.subject |
Asymptotic |
|
dc.subject |
Pattern formation |
|
dc.subject |
Nonlinear oscillation |
|
dc.subject |
Spiral waves |
|
dc.subject |
Complex Ginzburg-Landau equation |
|
dc.title |
Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains |
|
dc.type |
Journal article |
|
duke.contributor.id |
Witelski, T|0205263 |
|
dc.date.updated |
2021-06-30T13:50:36Z |
|
pubs.begin-page |
132699 |
|
pubs.end-page |
132699 |
|
pubs.organisational-group |
Trinity College of Arts & Sciences |
|
pubs.organisational-group |
Mathematics |
|
pubs.organisational-group |
Pratt |
|
pubs.organisational-group |
Duke |
|
pubs.organisational-group |
Pratt School of Engineering |
|
pubs.publication-status |
Published |
|
pubs.volume |
414 |
|
duke.contributor.orcid |
Witelski, T|0000-0003-0789-9859 |
|