Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Amino Acid-Level Signal-to-Noise Analysis Aids in Pathogenicity Prediction of Incidentally Identified TTN-Encoded Titin Truncating Variants.

Thumbnail
View / Download
527.0 Kb
Date
2021-02
Authors
Connell, Patrick S
Berkman, Amy M
Souder, BriAnna M
Pirozzi, Elisa J
Lovin, Julia J
Rosenfeld, Jill A
Liu, Pengfei
Tunuguntla, Hari
Allen, Hugh D
Denfield, Susan W
Kim, Jeffrey J
Landstrom, Andrew P
Show More
(12 total)
Repository Usage Stats
34
views
10
downloads
Abstract
<h4>Background</h4>TTN, the largest gene in the human body, encodes TTN (titin), a protein that plays key structural, developmental, and regulatory roles in skeletal and cardiac muscle. Variants in TTN, particularly truncating variants (TTNtvs), have been implicated in the pathogenicity of cardiomyopathy. Despite this link, there is also a high burden of TTNtvs in the ostensibly healthy general population. This complicates the diagnostic interpretation of incidentally identified TTNtvs, which are of increasing abundance given expanding clinical exome sequencing.<h4>Methods</h4>Incidentally identified TTNtvs were obtained from a large referral database of clinical exome sequencing (Baylor Genetics) and compared with rare population variants from genome aggregation database and cardiomyopathy-associated variants from cohort studies in the literature. A subset of TTNtv-positive children evaluated for cardiomyopathy at Texas Children's Hospital was retrospectively reviewed for clinical features of cardiomyopathy. Amino acid-level signal-to-noise analysis was performed.<h4>Results</h4>Pathological hotspots were identified within the A-band and N-terminal I-band that closely correlated with regions of high percent-spliced in of exons. Incidental TTNtvs and population TTNtvs did not localize to these regions. Variants were reclassified based on current American College of Medical Genetics and Genomics criteria with incorporation of signal-to-noise analysis among Texas Children's Hospital cases. Those reclassified as likely pathogenic or pathogenic were more likely to have evidence of cardiomyopathy on echocardiography than those reclassified as variants of unknown significance.<h4>Conclusions</h4>Incidentally found TTNtvs are common among clinical exome sequencing referrals. Pathological hotspots within the A-band of TTN may be informative in determining variant pathogenicity when incorporated into current American College of Medical Genetics and Genomics guidelines.
Type
Journal article
Subject
cardiomyopathies
exome
genetic testing
incidental findings
population
Permalink
https://hdl.handle.net/10161/23423
Published Version (Please cite this version)
10.1161/circgen.120.003131
Publication Info
Connell, Patrick S; Berkman, Amy M; Souder, BriAnna M; Pirozzi, Elisa J; Lovin, Julia J; Rosenfeld, Jill A; ... Landstrom, Andrew P (2021). Amino Acid-Level Signal-to-Noise Analysis Aids in Pathogenicity Prediction of Incidentally Identified TTN-Encoded Titin Truncating Variants. Circulation. Genomic and precision medicine, 14(1). pp. e003131. 10.1161/circgen.120.003131. Retrieved from https://hdl.handle.net/10161/23423.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Landstrom

Andrew Paul Landstrom

Associate Professor of Pediatrics
Dr. Landstrom is a physician scientist who specializes in the care of children and young adults with arrhythmias, heritable cardiovascular diseases, and sudden unexplained death syndromes. As a clinician, he is trained in pediatric cardiology with a focus on arrhythmias and genetic diseases of the heart.  He specializes in caring for patients with heritable arrhythmia (channelopathies) such as long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia,
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University