Epidemics on Evolving Graphs
The evoSIR model is a modification of the usual SIR process on a graph $G$ in which $S$-$I$ connections are broken at rate $\rho$ and the $S$ connects to a randomly chosen vertex. The evoSI model is the same as evoSI but recovery is impossible. In \cite{DOMath} the critical value for evoSIR was computed and simulations showed that when $G$ is an Erd\H os-R\'enyi graph with mean degree 5 the system has a discontinuous phase transition, i.e., as the infection rate $\lambda$ decreases to $\lambda_c$, the final fraction of once infected individuals does not converge to 0. In this paper we study evoSI dynamics on graphs generated by the configuration model. We show that there is a quantity $\Delta$ determined by the first three moments of the degree distribution, so that the transition is discontinuous if $\Delta>0$ and continuous if $\Delta<0$.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Duke Dissertations
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info