Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical Analysis of Response Distribution for Dependent Data via Joint Quantile Regression

Thumbnail
View / Download
2.9 Mb
Date
2021
Author
Chen, Xu
Advisor
Tokdar, Surya T
Repository Usage Stats
193
views
168
downloads
Abstract

Linear quantile regression is a powerful tool to investigate how predictors may affect a response heterogeneously across different quantile levels. Unfortunately, existing approaches find it extremely difficult to adjust for any dependency between observation units, largely because such methods are not based upon a fully generative model of the data. In this dissertation, we address this difficulty for analyzing spatial point-referenced data and hierarchical data. Several models are introduced by generalizing the joint quantile regression model of Yang and Tokdar (2017) and characterizing different dependency structures via a copula model on the underlying quantile levels of the observation units. A Bayesian semiparametric approach is introduced to perform inference of model parameters and carry out prediction. Multiple copula families are discussed for modeling response data with tail dependence and/or tail asymmetry. An effective model comparison criterion is provided for selecting between models with different combinations of sets of predictors, marginal base distributions and copula models.

Extensive simulation studies and real applications are presented to illustrate substantial gains of the proposed models in inference quality, prediction accuracy and uncertainty quantification over existing alternatives. Through case studies, we highlight that the proposed models admit great interpretability and are competent in offering insightful new discoveries of response-predictor relationship at non-central parts of the response distribution. The effectiveness of the proposed model comparison criteria is verified with both empirical and theoretical evidence.

Description
Dissertation
Type
Dissertation
Department
Statistical Science
Subject
Statistics
Copula
Gaussian process
Hierarchical data
Longitudinal data
Quantile regression
Spatial data
Permalink
https://hdl.handle.net/10161/23821
Citation
Chen, Xu (2021). Statistical Analysis of Response Distribution for Dependent Data via Joint Quantile Regression. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/23821.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University