Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Deep-Learning-based Multi-segment VMAT Plan Generation Algorithm from Patient Anatomy for Prostate Simultaneous Integrated Boost (SIB) Cases

Thumbnail
View / Download
2.3 Mb
Date
2021
Author
Zhu, Qingyuan
Advisor
Wu, Jackie Qing-rong
Repository Usage Stats
76
views
105
downloads
Abstract

Introduction: Several studies have realized fluence-map-prediction-based DL IMRT planning algorithms. However, DL-based VMAT planning remains unsolved. A main difficult in DL-based VMAT planning is how to generate leaf sequences from the predicted radiation intensity maps. Leaf sequences are required for a large number of control points and meet physical restrictions of MLC. A previous study1 reported a DL algorithm to generate 64-beam IMRT plans to approximate VMAT plans with certain dose distributions as input. As a step forward, another study2 reported a DL algorithm to generate one-arc VMAT plans from patient anatomy. This study generated MLC leaf sequence from thresholded predicted intensity maps for one-arc VMAT plans. Based on this study, we developed an algorithm to convert DL-predicted intensity maps to multi-segment VMAT plans to improve the performance of one-arc plans.

Methods: Our deep learning model utilizes a series of 2D projections of a patient’s dose prediction and contour structures to generate a multi-arc 360º dynamic MLC sequence in a VMAT plan. The backbone of this model is a novel U-net implementation which has a 4-resolution-step analysis path and a 4-resolution-step synthesis path. In the pretrained DL model, a total of 130 patients were involved, with 120 patients in the training and 11 patients in testing groups, respectively. These patients were prescribed with 70Gy/58.8Gy to the primary/boost PTVs in 28 fractions in a simulated integrated boost (SIB) regime. In this study, 7-8 arcs with the same collimator angle are used to simulate the predicted intensity maps. The predicted intensity maps are separated into 7-8 segments along the collimator angle. Hence, the arcs could separately simulate predicted intensity maps with independent weight factors. This separation also potentially allows MLC leaves to simulate more dose gradient in the predicted intensity mapsResults: After dose normalization (PTV70 V70Gy=95%), all 11 multi-segment test plans met institutional clinic guidelines of dose distribution outside PTV. Bladder (V70Gy=5.3±3.3cc, V40Gy=16.1±8.6%) and rectum (V70Gy=4.5±2.3cc, V40Gy=33.4±8.1%) results in multi-segment plans were comparable with the commercial TPS plan results. 3D max dose results in AVP-DSP plans(D1cc=112.6±1.9%) were higher than the commercial TPS plans results(D1cc=106.7±0.8%). On average, AVP-DSP used 600 seconds for a plan generation in contrast to the current clinical practice (>20 minutes).

Conclusion: Results suggest that multi-segment plans can generate a prostate VMAT plan with clinically-acceptable dosimetric quality. the proposed multi-segment plan generation algorithm has the capability to achieve higher modulation and lower maximum dose. With its high efficiency, multi-segment may hold great potentials of real-time planning application after further validation.

Description
Master's thesis
Type
Master's thesis
Department
DKU - Medical Physics Master of Science Program
Subject
Physics
deep learning
real-time planning
treatment planning
Permalink
https://hdl.handle.net/10161/23831
Citation
Zhu, Qingyuan (2021). A Deep-Learning-based Multi-segment VMAT Plan Generation Algorithm from Patient Anatomy for Prostate Simultaneous Integrated Boost (SIB) Cases. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/23831.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University