Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Epidemiology and Outcomes of Acute Respiratory Distress Syndrome Following Isolated Severe Traumatic Brain Injury.

Thumbnail
View / Download
101.1 Kb
Date
2020-11-15
Authors
Komisarow, Jordan M
Chen, Fangyu
Vavilala, Monica S
Laskowitz, Daniel
James, Michael L
Krishnamoorthy, Vijay
Repository Usage Stats
16
views
4
downloads
Abstract
Patients with traumatic brain injury (TBI) are at risk for extra-cranial complications, such as the acute respiratory distress syndrome (ARDS). We conducted an analysis of risk factors, mortality, and healthcare utilization associated with ARDS following isolated severe TBI. The National Trauma Data Bank (NTDB) dataset files from 2007-2014 were used to identify adult patients who suffered isolated [other body region-specific Abbreviated Injury Scale (AIS) < 3] severe TBI [admission total Glasgow Coma Scale (GCS) from 3 to 8 and head region-specific AIS >3]. In-hospital mortality was compared between patients who developed ARDS and those who did not. Utilization of healthcare resources (ICU length of stay, hospital length of stay, duration of mechanical ventilation, and frequency of tracheostomy and gastrostomy tube placement) was also examined. This retrospective cohort study included 38,213 patients with an overall ARDS occurrence of 7.5%. Younger age, admission tachycardia, pre-existing vascular and respiratory diseases, and pneumonia were associated with the development of ARDS. Compared to patients without ARDS, patients that developed ARDS experienced increased in-hospital mortality (OR 1.13, 95% CI 1.01-1.26), length of stay (p = <0.001), duration of mechanical ventilation (p = < 0.001), and placement of tracheostomy (OR 2.70, 95% CI 2.34-3.13) and gastrostomy (OR 2.42, 95% CI 2.06-2.84). After isolated severe TBI, ARDS is associated with increased mortality and healthcare utilization. Future studies should focus on both prevention and management strategies specific to TBI-associated ARDS.
Type
Journal article
Subject
ARDS
critical care
multi-organ dysfunction
traumatic brain injury
Permalink
https://hdl.handle.net/10161/23869
Published Version (Please cite this version)
10.1177/0885066620972001
Publication Info
Komisarow, Jordan M; Chen, Fangyu; Vavilala, Monica S; Laskowitz, Daniel; James, Michael L; & Krishnamoorthy, Vijay (2020). Epidemiology and Outcomes of Acute Respiratory Distress Syndrome Following Isolated Severe Traumatic Brain Injury. Journal of intensive care medicine. pp. 885066620972001. 10.1177/0885066620972001. Retrieved from https://hdl.handle.net/10161/23869.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

James

Michael Lucas James

Associate Professor of Anesthesiology
I have an extensive background in neuroanesthesia and neurointensive care and a special research interest in translational and clinical research aspects of intracerebral hemorrhage. After completing residencies in neurology and anesthesiology with fellowships in neurocritical care, neuroanesthesia, and vascular neurology, I developed a murine model of intracerebral hemorrhage in the Multidisciplinary Neuroprotection Laboratories at Duke University. After optimization of the model, I h
Komisarow

Jordan Komisarow

Assistant Professor of Neurosurgery
Krishnamoorthy

Vijay Krishnamoorthy

Associate Professor of Anesthesiology
Laskowitz

Daniel Todd Laskowitz

Professor of Neurology
Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical settin
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University