Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Nicholas School of the Environment
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon Gain and Allocation in Five Shade Intolerant Pinus Species

Thumbnail
View / Download
19.0 Mb
Date
2021-12-08
Author
Wang, Yi
Advisors
Palmroth, Sari
Oren, Ram
Maier, Christopher A.
Repository Usage Stats
112
views
23
downloads
Abstract
Pinus virginiana (Virginia pine), Pinus echinata (shortleaf pine), Pinus taeda (loblolly pine), Pinus elliottii (slash pine), and Pinus palustris (longleaf pine) are five of the most dominant shade-intolerant pine species in the southeast region. These five species have overlapping geographic ranges, tolerate poor soil conditions and low water availability conditions, and have relatively high volume growth rate. Among the five species, P. virginiana and P. echinata have the shortest needles of around 5-7 cm. P. taeda and P. elliottii have the intermediate needle length of around 15-22 cm, while P. palustris has the longest needles of around 30 cm. To compare the among species differences in biomass growth rate based on their physiology, morphology, and hydraulics related leaf traits, shoot and crown structure, and biomass allocation, we collected the data from an experimental site in Duke Forest and compared the performance of these five species when trees of the same age were grown under the same climate and soil conditions. Our study revealed distinct differences in allometric relationships and biomass allocation patterns among the five species. Analysis of leaf functional traits and crown structure showed variation in the ability to support leaf area at a given leaf mass, branch mass, and sapwood area across species. Finally, the differences in total biomass and wood production among species reflected the combined effect of leaf area index and biomass allocation pattern. We found that, when growing in one environment, species with intermediate needle length (P. taeda and P. elliottii) were more efficient in biomass production and volume growth while balancing the investment in intercepting light and maintaining hydraulic system. The results of this study indicated that growth-related functional traits, combined with biomass allocation patterns that favor stem and aboveground production, make P. taeda and P. elliottii among the fastest growing conifers with high timber values, regionally and globally.
Type
Master's project
Department
Nicholas School of the Environment and Earth Sciences
Subject
Pine
Biomass
Leaf traits
Crown structure
Leaf area index
Growth efficiency
Permalink
https://hdl.handle.net/10161/24058
Citation
Wang, Yi (2021). Carbon Gain and Allocation in Five Shade Intolerant Pinus Species. Master's project, Duke University. Retrieved from https://hdl.handle.net/10161/24058.
Collections
  • Nicholas School of the Environment
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Nicholas School of the Environment


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University