dc.contributor.author |
Cherkis, Sergey A |
|
dc.contributor.author |
Larrain-Hubach, Andres |
|
dc.contributor.author |
Stern, Mark |
|
dc.date.accessioned |
2021-12-13T20:13:11Z |
|
dc.date.available |
2021-12-13T20:13:11Z |
|
dc.date.issued |
2019-12-06 |
|
dc.identifier.issn |
0022-040X |
|
dc.identifier.issn |
1945-743X |
|
dc.identifier.uri |
https://hdl.handle.net/10161/24071 |
|
dc.description.abstract |
We study finite action anti-self-dual Yang-Mills connections on the
multi-Taub-NUT space. We establish the curvature and the harmonic spinors decay
rates and compute the index of the associated Dirac operator.
This is the first in a series of papers proving the completeness of the bow
construction of instantons on multi-Taub-NUT spaces and exploring it in detail.
|
|
dc.publisher |
International Press |
|
dc.relation.ispartof |
Journal of Differential Geometry |
|
dc.relation.isversionof |
10.4310/jdg/1631124166 |
|
dc.subject |
math.DG |
|
dc.subject |
math.DG |
|
dc.subject |
hep-th |
|
dc.title |
Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem |
|
dc.type |
Journal article |
|
duke.contributor.id |
Stern, Mark|0115518 |
|
dc.date.updated |
2021-12-13T20:13:10Z |
|
pubs.begin-page |
1 |
|
pubs.end-page |
72 |
|
pubs.issue |
1 |
|
pubs.organisational-group |
Trinity College of Arts & Sciences |
|
pubs.organisational-group |
Mathematics |
|
pubs.organisational-group |
Duke |
|
pubs.publication-status |
Accepted |
|
pubs.volume |
119 |
|
duke.contributor.orcid |
Stern, Mark|0000-0002-6550-5515 |
|