Show simple item record

Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem

dc.contributor.author Cherkis, Sergey A
dc.contributor.author Larrain-Hubach, Andres
dc.contributor.author Stern, Mark
dc.date.accessioned 2021-12-13T20:13:11Z
dc.date.available 2021-12-13T20:13:11Z
dc.date.issued 2019-12-06
dc.identifier.issn 0022-040X
dc.identifier.issn 1945-743X
dc.identifier.uri https://hdl.handle.net/10161/24071
dc.description.abstract We study finite action anti-self-dual Yang-Mills connections on the multi-Taub-NUT space. We establish the curvature and the harmonic spinors decay rates and compute the index of the associated Dirac operator. This is the first in a series of papers proving the completeness of the bow construction of instantons on multi-Taub-NUT spaces and exploring it in detail.
dc.publisher International Press
dc.relation.ispartof Journal of Differential Geometry
dc.relation.isversionof 10.4310/jdg/1631124166
dc.subject math.DG
dc.subject math.DG
dc.subject hep-th
dc.title Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem
dc.type Journal article
duke.contributor.id Stern, Mark|0115518
dc.date.updated 2021-12-13T20:13:10Z
pubs.begin-page 1
pubs.end-page 72
pubs.issue 1
pubs.organisational-group Trinity College of Arts & Sciences
pubs.organisational-group Mathematics
pubs.organisational-group Duke
pubs.publication-status Accepted
pubs.volume 119
duke.contributor.orcid Stern, Mark|0000-0002-6550-5515


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record