Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin.

Thumbnail
View / Download
3.3 Mb
Date
2021-07
Authors
Hersey, Melinda
Samaranayake, Srimal
Berger, Shane N
Tavakoli, Navid
Mena, Sergio
Nijhout, H Frederik
Reed, Michael C
Best, Janet
Blakely, Randy D
Reagan, Lawrence P
Hashemi, Parastoo
Show More
(11 total)
Repository Usage Stats
110
views
58
downloads
Abstract
Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.
Type
Journal article
Subject
Hippocampus
Animals
Mice, Inbred C57BL
Mice
Inflammation
Histamine
Serotonin
Citalopram
Serotonin Uptake Inhibitors
Female
Male
Permalink
https://hdl.handle.net/10161/24073
Published Version (Please cite this version)
10.1523/jneurosci.2618-20.2021
Publication Info
Hersey, Melinda; Samaranayake, Srimal; Berger, Shane N; Tavakoli, Navid; Mena, Sergio; Nijhout, H Frederik; ... Hashemi, Parastoo (2021). Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(30). pp. 6564-6577. 10.1523/jneurosci.2618-20.2021. Retrieved from https://hdl.handle.net/10161/24073.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Nijhout

H. Frederik Nijhout

John Franklin Crowell Distinguished Professor of Biology
Fred Nijhout is broadly interested in developmental physiology and in the interactions between development and evolution. He has several lines of research ongoing in his laboratory that on the surface may look independent from one another, but all share a conceptual interest in understanding how complex traits arise through, and are affected by, the interaction of genetic and environmental factors. 1) The control of polyphenic development in insects. This work attempts to understand how the inse
Reed

Michael C. Reed

Arts & Sciences Distinguished Professor of Mathematics
Professor Reed is engaged in a large number of research projects that involve the application of mathematics to questions in physiology and medicine. He also works on questions in analysis that are stimulated by biological questions. For recent work on cell metabolism and public health, go to sites@duke.edu/metabolism. Since 2003, Professor Reed has worked with Professor Fred Nijhout (Duke Biology) to use mathematical methods to understan
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University