Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector.

Thumbnail
View / Download
3.8 Mb
Date
2020-10-21
Authors
Holbrook, MD
Clark, DP
Badea, CT
Repository Usage Stats
6
views
1
downloads
Abstract
Preclinical micro-CT provides a hotbed in which to develop new imaging technologies, including spectral CT using photon counting detector (PCD) technology. Spectral imaging using PCDs promises to expand x-ray CT as a functional imaging modality, capable of molecular imaging, while maintaining CT's role as a powerful anatomical imaging modality. However, the utility of PCDs suffers due to distorted spectral measurements, affecting the accuracy of material decomposition. We attempt to improve material decomposition accuracy using our novel hybrid dual-source micro-CT system which combines a PCD and an energy integrating detector. Comparisons are made between PCD-only and hybrid CT results, both reconstructed with our iterative, multi-channel algorithm based on the split Bregman method and regularized with rank-sparse kernel regression. Multi-material decomposition is performed post-reconstruction for separation of iodine (I), gold (Au), gadolinium (Gd), and calcium (Ca). System performance is evaluated first in simulations, then in micro-CT phantoms, and finally in an in vivo experiment with a genetically modified p53fl/fl mouse cancer model with Au, Gd, and I nanoparticle (NP)-based contrasts agents. Our results show that the PCD-only and hybrid CT reconstructions offered very similar spatial resolution at 10% MTF (PCD: 3.50 lp mm-1; hybrid: 3.47 lp mm-1) and noise characteristics given by the noise power spectrum. For material decomposition we note successful separation of the four basis materials. We found that hybrid reconstruction reduces RMSE by an average of 37% across all material maps when compared to PCD-only of similar dose but does not provide much difference in terms of concentration accuracy. The in vivo results show separation of targeted Au and accumulated Gd NPs in the tumor from intravascular iodine NPs and bone. Hybrid spectral micro-CT can benefit nanotechnology and cancer research by providing quantitative imaging to test and optimize various NPs for diagnostic and therapeutic applications.
Type
Journal article
Subject
Animals
Humans
Mice
Sarcoma
Sarcoma, Experimental
Iodine
Gadolinium
Contrast Media
Phantoms, Imaging
Algorithms
Photons
Image Processing, Computer-Assisted
X-Ray Microtomography
Permalink
https://hdl.handle.net/10161/24253
Published Version (Please cite this version)
10.1088/1361-6560/aba8b2
Publication Info
Holbrook, MD; Clark, DP; & Badea, CT (2020). Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector. Physics in medicine and biology, 65(20). pp. 205012. 10.1088/1361-6560/aba8b2. Retrieved from https://hdl.handle.net/10161/24253.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Badea

Cristian Tudorel Badea

Professor in Radiology
Our lab's research focus lies primarily in developing novel quantitative imaging systems, reconstruction algorithms and analysis methods.  My major expertise is in preclinical CT. Currently, we are particularly interested in developing novel strategies for spectral CT imaging using nanoparticle-based contrast agents for theranostics (i.e. therapy and diagnostics). We are also engaged in developin

Darin Clark

Assistant Professor in Radiology
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University