Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.

Thumbnail
View / Download
3.7 Mb
Date
2020-09
Authors
Clark, Darin P
Schwartz, Fides R
Marin, Daniele
Ramirez-Giraldo, Juan C
Badea, Cristian T
Repository Usage Stats
7
views
4
downloads
Abstract
<h4>Purpose</h4>Data completion is commonly employed in dual-source, dual-energy computed tomography (CT) when physical or hardware constraints limit the field of view (FoV) covered by one of two imaging chains. Practically, dual-energy data completion is accomplished by estimating missing projection data based on the imaging chain with the full FoV and then by appropriately truncating the analytical reconstruction of the data with the smaller FoV. While this approach works well in many clinical applications, there are applications which would benefit from spectral contrast estimates over the larger FoV (spectral extrapolation)-e.g. model-based iterative reconstruction, contrast-enhanced abdominal imaging of large patients, interior tomography, and combined temporal and spectral imaging.<h4>Methods</h4>To document the fidelity of spectral extrapolation and to prototype a deep learning algorithm to perform it, we assembled a data set of 50 dual-source, dual-energy abdominal x-ray CT scans (acquired at Duke University Medical Center with 5 Siemens Flash scanners; chain A: 50 cm FoV, 100 kV; chain B: 33 cm FoV, 140 kV + Sn; helical pitch: 0.8). Data sets were reconstructed using ReconCT (v14.1, Siemens Healthineers): 768 × 768 pixels per slice, 50 cm FoV, 0.75 mm slice thickness, "Dual-Energy - WFBP" reconstruction mode with dual-source data completion. A hybrid architecture consisting of a learned piecewise linear transfer function (PLTF) and a convolutional neural network (CNN) was trained using 40 scans (five scans reserved for validation, five for testing). The PLTF learned to map chain A spectral contrast to chain B spectral contrast voxel-wise, performing an image domain analog of dual-source data completion with approximate spectral reweighting. The CNN with its U-net structure then learned to improve the accuracy of chain B contrast estimates by copying chain A structural information, by encoding prior chain A, chain B contrast relationships, and by generalizing feature-contrast associations. Training was supervised, using data from within the 33-cm chain B FoV to optimize and assess network performance.<h4>Results</h4>Extrapolation performance on the testing data confirmed our network's robustness and ability to generalize to unseen data from different patients, yielding maximum extrapolation errors of 26 HU following the PLTF and 7.5 HU following the CNN (averaged per target organ). Degradation of network performance when applied to a geometrically simple phantom confirmed our method's reliance on feature-contrast relationships in correctly inferring spectral contrast. Integrating our image domain spectral extrapolation network into a standard dual-source, dual-energy processing pipeline for Siemens Flash scanner data yielded spectral CT data with adequate fidelity for the generation of both 50 keV monochromatic images and material decomposition images over a 30-cm FoV for chain B when only 20 cm of chain B data were available for spectral extrapolation.<h4>Conclusions</h4>Even with a moderate amount of training data, deep learning methods are capable of robustly inferring spectral contrast from feature-contrast relationships in spectral CT data, leading to spectral extrapolation performance well beyond what may be expected at face value. Future work reconciling spectral extrapolation results with original projection data is expected to further improve results in outlying and pathological cases.
Type
Journal article
Subject
Humans
Tomography, X-Ray Computed
Phantoms, Imaging
Algorithms
X-Rays
Deep Learning
Permalink
https://hdl.handle.net/10161/24254
Published Version (Please cite this version)
10.1002/mp.14324
Publication Info
Clark, Darin P; Schwartz, Fides R; Marin, Daniele; Ramirez-Giraldo, Juan C; & Badea, Cristian T (2020). Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography. Medical physics, 47(9). pp. 4150-4163. 10.1002/mp.14324. Retrieved from https://hdl.handle.net/10161/24254.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Badea

Cristian Tudorel Badea

Professor in Radiology
Our lab's research focus lies primarily in developing novel quantitative imaging systems, reconstruction algorithms and analysis methods.  My major expertise is in preclinical CT. Currently, we are particularly interested in developing novel strategies for spectral CT imaging using nanoparticle-based contrast agents for theranostics (i.e. therapy and diagnostics). We are also engaged in developin

Darin Clark

Assistant Professor in Radiology
Marin

Daniele Marin

Associate Professor of Radiology
Liver Imaging Dual Energy CT CT Protocol Optimization Dose Reduction Strategies for Abdominal CT Applications
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University