Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biosynthetic and Chemical Investigation of Lipid II-Binding Antimicrobials.


Access is limited until:
2024-01-18
View / Download
19.3 Mb
Date
2021
Author
Stariha, Lydia
Advisor
McCafferty , Dewey G
Repository Usage Stats
66
views
0
downloads
Abstract

Natural products belonging to the lipid II-binding family act as potent antimicrobial agents by disrupting cell wall biosynthesis via sequestering the late-stage intermediate lipid II. However, the emergence of resistance mechanisms and poor bioavailability have hindered the utility of these molecules as promising therapeutic intervention strategies to combat pathogenic bacterial infections. Gaining a deeper understanding of structural components and biosynthetic pathways can lead to the creation of second-generation derivatives to improve bioactivity and pharmacological properties. To explore this superfamily, we have used bioanalytical, biochemical, synthetic, computational, and enzymatic approaches that have been applied to three distinct projects. The first includes efforts to characterize the relationship between structural feature and bioactivity for the lipid II-binding CDA (calcium dependent antibiotic), malacidin. Through a series of minimally complex analogs, we determined non-proteinogenic amino acids and the N-acyl fatty acid moiety are essential for bioactivity. For the second project, we investigated a conserved mechanism of action for phylogenetically-related natural products within the lasso peptide subfamily. This work led to the discovery of a novel class I lasso peptide, arcumycin, and we validated a conserved mechanism of action for Actinobacteria-produced lasso peptides in targeting lipid II biosynthesis. Our last project sought to elucidate the mechanism of lipoinitiation for the ramoplanin family of molecules. Through a series of bioactivity assays, we found the transfer to the acyl carrier protein (ACP) in a fatty acyl-AMP ligase (FAAL)-dependent manner determined the specificity of lipids selected in the biosynthetic process. Collectively, through each project we have gained a deeper understanding of the structural elements and biosynthetic pathways of lipid II-binding antimicrobials.

Type
Dissertation
Department
Chemistry
Subject
Chemistry
antibiotics
lipid II
natural products
peptides
proteins
synthesis
Permalink
https://hdl.handle.net/10161/24388
Citation
Stariha, Lydia (2021). Biosynthetic and Chemical Investigation of Lipid II-Binding Antimicrobials. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/24388.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University