Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metabolic Regulation of Mast Cell Regranulation


Access is limited until:
2024-01-18
View / Download
2.6 Mb
Date
2021
Author
Iskarpatyoti, Jason Ansen
Advisor
Abraham, Soman N
Repository Usage Stats
61
views
0
downloads
Abstract

Mast cells (MCs) are long-lived hematopoietic cells located within tissues. These cells are densely packed with granules containing preformed bioactive components that are released within seconds to minutes upon activation in a process called degranulation. MCs have beneficial roles in pathogen clearance and wound healing but are most widely associated with their deleterious effects in allergic diseases. Importantly, MCs have been shown to reform granules following degranulation in vitro. This capacity for multiple cycles of degranulation and regranulation is thought to contribute to chronic allergic diseases such as asthma and atopic dermatitis, however, MC regranulation has not been previously demonstrated in vivo. Additionally, how MCs regulate regranulation has not been previously shown. In this study, we demonstrate that following anaphylaxis, peritoneal MCs from mice can undergo regranulation. Additionally, using inducible Raptor knockout mice, we show that mTORC1, a well-known mediator of cellular metabolism, is necessary for MC regranulation in vitro and in vivo. Using a microarray approach, we determined that mTORC1 activity is regulated by Slc37a2. This glucose-6-phosphate transporter is necessary for increased glucose-6-phosphate and ATP concentrations during regranulation, two upstream signals of mTOR. Additionally, Scl37a2 was found localized to endosomes during regranulation, where it concentrated extracellular cargo which are trafficked into newly formed granules. Thus, MC regranulation is regulated by a metabolic reprogramming that requires the interaction of the glucose-6-phosphate transporter Slc37a2 and the nutrient sensor mTORC1.

Description
Dissertation
Type
Dissertation
Department
Molecular Genetics and Microbiology
Subject
Cellular biology
Immunology
Mast Cells
Metabolism
mTOR
Regranulation
Slc37a2
Permalink
https://hdl.handle.net/10161/24403
Citation
Iskarpatyoti, Jason Ansen (2021). Metabolic Regulation of Mast Cell Regranulation. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/24403.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University