Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How cells determine the number of polarity sites.

Thumbnail
View / Download
2.0 Mb
Date
2021-04-26
Authors
Chiou, Jian-Geng
Moran, Kyle D
Lew, Daniel J
Repository Usage Stats
24
views
1
downloads
Abstract
The diversity of cell morphologies arises, in part, through regulation of cell polarity by Rho-family GTPases. A poorly understood but fundamental question concerns the regulatory mechanisms by which different cells generate different numbers of polarity sites. Mass-conserved activator-substrate (MCAS) models that describe polarity circuits develop multiple initial polarity sites, but then those sites engage in competition, leaving a single winner. Theoretical analyses predicted that competition would slow dramatically as GTPase concentrations at different polarity sites increase toward a 'saturation point', allowing polarity sites to coexist. Here, we test this prediction using budding yeast cells, and confirm that increasing the amount of key polarity proteins results in multiple polarity sites and simultaneous budding. Further, we elucidate a novel design principle whereby cells can switch from competition to equalization among polarity sites. These findings provide insight into how cells with diverse morphologies may determine the number of polarity sites.
Type
Journal article
Subject
Saccharomyces cerevisiae
cdc42 GTP-Binding Protein, Saccharomyces cerevisiae
Cell Cycle Proteins
Cytoskeletal Proteins
Saccharomyces cerevisiae Proteins
Signal Transduction
Cell Division
Cell Polarity
Cell Shape
Gene Expression Regulation, Fungal
Models, Biological
Time Factors
Computer Simulation
Numerical Analysis, Computer-Assisted
Permalink
https://hdl.handle.net/10161/24507
Published Version (Please cite this version)
10.7554/elife.58768
Publication Info
Chiou, Jian-Geng; Moran, Kyle D; & Lew, Daniel J (2021). How cells determine the number of polarity sites. eLife, 10. 10.7554/elife.58768. Retrieved from https://hdl.handle.net/10161/24507.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lew

Daniel Julio Lew

James B. Duke Distinguished Professor of Pharmacology and Cancer Biology
Our research interests focus on the control of cell polarity.  Cell polarity is a nearly universal feature of eukaryotic cells. A polarized cell usually has a single, clear axis of asymmetry: a “front” and a “back”.  In the past several years it has become apparent that the highly conserved Rho-family GTPase Cdc42, first discovered in yeast, is a component of a master pathway, employed time and again to promote polarity in different contexts.  
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University