Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rescuing the neonatal brain from hypoxic injury with autologous cord blood.

Thumbnail
View / Download
1009.3 Kb
Date
2013-07
Authors
Liao, Y
Cotten, M
Tan, S
Kurtzberg, J
Cairo, MS
Repository Usage Stats
24
views
24
downloads
Abstract
Brain injury resulting from perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of acute mortality in infants and chronic neurologic disability in surviving children. Recent multicenter clinical trials demonstrated the effectiveness of hypothermia initiated within the first 6 postnatal hours to reduce the risk of death or major neurological disabilities among neonates with HIE. However, in these trials, approximately 40% of cooled infants died or survived with significant impairments. Therefore, adjunct therapies are required to improve the outcome in neonates with HIE. Cord blood (CB) is a rich source of stem cells. Administration of human CB cells in animal models of HIE has generally resulted in improved outcomes and multiple mechanisms have been suggested including anti-inflammation, release of neurotrophic factors and stimulation of endogenous neurogenesis. Investigators at Duke are conducting studies of autologous CB infusion in neonates with HIE and in children with cerebral palsy. These pilot studies indicate no added risk from the regimens used, but results of ongoing placebo-controlled trials are needed to assess efficacy. Meanwhile, further investigations are warranted to determine the best strategies, that is, timing, dosing, route of delivery, choice of stem cells and ex vivo modulations, to attain long-term benefits of CB stem cell therapy.
Type
Journal article
Subject
Animals
Humans
Hypoxia, Brain
Birth Injuries
Cord Blood Stem Cell Transplantation
Infant, Newborn
Multicenter Studies as Topic
Randomized Controlled Trials as Topic
Autografts
Permalink
https://hdl.handle.net/10161/24686
Published Version (Please cite this version)
10.1038/bmt.2012.169
Publication Info
Liao, Y; Cotten, M; Tan, S; Kurtzberg, J; & Cairo, MS (2013). Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone marrow transplantation, 48(7). pp. 890-900. 10.1038/bmt.2012.169. Retrieved from https://hdl.handle.net/10161/24686.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics
Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolina
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University