Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simple systems with anomalous dissipation and energy cascade

Thumbnail
View / Download
312.6 Kb
Date
2007-11-01
Authors
Mattingly, JC
Suidan, T
Vanden-Eijnden, E
Repository Usage Stats
6
views
1
downloads
Abstract
We analyze a class of dynamical systems of the type ȧn(t) = cn-1 an-1(t) - cn an+1(t) + f n(t), n ∈ ℕ, a 0=0, where f n (t) is a forcing term with fn(t) ≠ = 0 only for ≤n n* < ∞ and the coupling coefficients c n satisfy a condition ensuring the formal conservation of energy 1/2 Σn |a n(t)|2. Despite being formally conservative, we show that these dynamical systems support dissipative solutions (suitably defined) and, as a result, may admit unique (statistical) steady states when the forcing term f n (t) is nonzero. This claim is demonstrated via the complete characterization of the solutions of the system above for specific choices of the coupling coefficients c n . The mechanism of anomalous dissipations is shown to arise via a cascade of the energy towards the modes with higher n; this is responsible for solutions with interesting energy spectra, namely E |an|2 scales as n-α as n→∞. Here the exponents α depend on the coupling coefficients c n and E denotes expectation with respect to the equilibrium measure. This is reminiscent of the conjectured properties of the solutions of the Navier-Stokes equations in the inviscid limit and their accepted relationship with fully developed turbulence. Hence, these simple models illustrate some of the heuristic ideas that have been advanced to characterize turbulence, similar in that respect to the random passive scalar or random Burgers equation, but even simpler and fully solvable. © 2007 Springer-Verlag.
Type
Journal article
Subject
Science & Technology
Physical Sciences
Physics, Mathematical
Physics
EULER
EQUATIONS
Permalink
https://hdl.handle.net/10161/24756
Published Version (Please cite this version)
10.1007/s00220-007-0333-0
Publication Info
Mattingly, JC; Suidan, T; & Vanden-Eijnden, E (2007). Simple systems with anomalous dissipation and energy cascade. Communications in Mathematical Physics, 276(1). pp. 189-220. 10.1007/s00220-007-0333-0. Retrieved from https://hdl.handle.net/10161/24756.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Mattingly

Jonathan Christopher Mattingly

James B. Duke Distinguished Professor
Jonathan Christopher  Mattingly grew up in Charlotte, NC where he attended Irwin Ave elementary and Charlotte Country Day.  He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University where he obtained a PhD in Applied and
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University