Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genomic and functional variation of human centromeres.

Thumbnail
View / Download
1.3 Mb
Date
2020-04
Authors
Sullivan, Lori L
Sullivan, Beth A
Repository Usage Stats
27
views
11
downloads
Abstract
Centromeres are central to chromosome segregation and genome stability, and thus their molecular foundations are important for understanding their function and the ways in which they go awry. Human centromeres typically form at large megabase-sized arrays of alpha satellite DNA for which there is little genomic understanding due to its repetitive nature. Consequently, it has been difficult to achieve genome assemblies at centromeres using traditional next generation sequencing approaches, so that centromeres represent gaps in the current human genome assembly. The role of alpha satellite DNA has been debated since centromeres can form, albeit rarely, on non-alpha satellite DNA. Conversely, the simple presence of alpha satellite DNA is not sufficient for centromere function since chromosomes with multiple alpha satellite arrays only exhibit a single location of centromere assembly. Here, we discuss the organization of human centromeres as well as genomic and functional variation in human centromere location, and current understanding of the genomic and epigenetic mechanisms that underlie centromere flexibility in humans.
Type
Journal article
Subject
Centromere
Chromatin
Animals
Humans
Genomic Instability
Chromosome Segregation
Meiosis
Genome
Permalink
https://hdl.handle.net/10161/24766
Published Version (Please cite this version)
10.1016/j.yexcr.2020.111896
Publication Info
Sullivan, Lori L; & Sullivan, Beth A (2020). Genomic and functional variation of human centromeres. Experimental cell research, 389(2). pp. 111896. 10.1016/j.yexcr.2020.111896. Retrieved from https://hdl.handle.net/10161/24766.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Sullivan

Beth Ann Sullivan

James B. Duke Distinguished Professor
Research in the Sullivan Lab is focused on chromosome organization, with a specific emphasis on the genomics and epigenetics of the chromosomal locus called the centromere. The centromere is a specialized chromosomal site involved in chromosome architecture and movement, and when defective, is linked to cancer, birth defects, and infertility. The lab has described a unique type of chromatin (CEN chromatin) that forms exclusively at the centromere by replacement of core histone H3 by the centrome
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University