Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Postponing the dynamical transition density using competing interactions

Thumbnail
View / Download
493.3 Kb
Date
2020-08-01
Authors
Charbonneau, P
Kundu, J
Repository Usage Stats
28
views
5
downloads
Abstract
Systems of dense spheres interacting through very short-ranged attraction are known from theory, simulations and colloidal experiments to exhibit dynamical reentrance. Their liquid state can thus be fluidized at higher densities than possible in systems with pure repulsion or with long-ranged attraction. A recent mean-field, infinite-dimensional calculation predicts that the dynamical arrest of the fluid can be further delayed by adding a longer-ranged repulsive contribution to the short-ranged attraction. We examine this proposal by performing extensive numerical simulations in a three-dimensional system. We first find the short-ranged attraction parameters necessary to achieve the densest liquid state, and then explore the parameter space for an additional longer-ranged repulsion that could further enhance reentrance. In the family of systems studied, no significant (within numerical accuracy) delay of the dynamical arrest is observed beyond what is already achieved by the short-ranged attraction. Possible explanations are discussed.
Type
Journal article
Subject
Science & Technology
Technology
Physical Sciences
Materials Science, Multidisciplinary
Mechanics
Physics, Applied
Materials Science
Physics
Disorder systems
Glass
Dynamical transition
Square-well
Square-shoulder
Dynamical criticality
GLASS-TRANSITION
EQUILIBRIUM
BEHAVIOR
Permalink
https://hdl.handle.net/10161/24988
Published Version (Please cite this version)
10.1007/s10035-020-0998-z
Publication Info
Charbonneau, P; & Kundu, J (2020). Postponing the dynamical transition density using competing interactions. Granular Matter, 22(3). 10.1007/s10035-020-0998-z. Retrieved from https://hdl.handle.net/10161/24988.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Charbonneau

Patrick Charbonneau

Professor of Chemistry
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University