Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adsorption of Pharmaceutically Active Compounds (PhACs) by Powdered Activated Carbon from Natural Water --Influence of Natural Organic Matter (NOM)

Thumbnail
View / Download
1.0 Mb
Date
2010
Author
Gao, Yaohuan
Advisor
Deshusses, Marc A
Repository Usage Stats
508
views
1,022
downloads
Abstract

Powdered Activated Carbon (PAC) adsorption was studied in order to determine the influence of natural organic matter (NOM) on the adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen. Suwannee River humic acids (SRHAs) was used as substitute of NOM in natural water. Batch adsorption experiments were conducted to obtain the single compound adsorption kinetics and adsorption isotherm with and without SRHAs in the system. Three main findings resulted from this study. First, the adsorption isotherms showed that the adsorption of clofibric acid was not significantly affected in the presence of SRHAs (5 ppm); however, the adsorption of ketoprofen markedly decreased with SRHAs in the solutions. Higher initial concentrations of clofibric acid than ketoprofen together with the compressed double layer theory helped explain the different behaviors that were observed. Furthermore, the more hydrophobic ketoprofen molecules may increase the possibility that this compound would adsorb less on the surface area which was covered by the more hydrophilic humic acids. Second, the adsorption kinetics of both compounds were not affected by the SRHAs, although more research may be needed, as it is possible that slight differences exist during the initial adsorption phase. Lastly, possible intermolecular forces were discussed and a sequence of importance is proposed for their role in the adsorption process as A). electrostatic forces; B). electron donor-acceptor interaction; C & D). H-bond and London Dispersion forces.

Type
Master's thesis
Department
Civil and Environmental Engineering
Subject
Engineering, Environmental
humic acids
pharmaceutically active compound
powdered activated carbon
Permalink
https://hdl.handle.net/10161/2510
Citation
Gao, Yaohuan (2010). Adsorption of Pharmaceutically Active Compounds (PhACs) by Powdered Activated Carbon from Natural Water --Influence of Natural Organic Matter (NOM). Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/2510.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University