Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intelligent Circuit Design and Implementation with Machine Learning

Thumbnail
View / Download
16.6 Mb
Date
2022
Author
Xie, Zhiyao
Advisor
Chen, Yiran
Repository Usage Stats
13
views
10
downloads
Abstract

Electronic design automation (EDA) technology has achieved remarkable progress over the past decades. However, modern chip design is not completely automatic yet in general and the gap is not easily surmountable. For example, the chip design flow is still largely restricted to individual point tools with limited interplay across tools and design steps. Tools applied at early steps cannot well judge if their solutions may eventually lead to satisfactory designs, inevitably leading to over-pessimistic design or significantly longer turnaround time. While existing challenges have long been unsolved, the ever-increasing complexity of integrated circuits (ICs) leads to even more stringent design requirements. Therefore, there is a compelling need for essential improvement in existing EDA techniques.

The stagnation of EDA technologies roots from insufficient knowledge reuse. In practice, very similar simulation or optimization results may need to be repeatedly constructed from scratch. This motivates my research on introducing more ``intelligence'' to EDA with machine learning (ML), which explores complex correlations in design flows based on prior data. Besides design time, I also propose ML solutions to boost IC performance by assisting the circuit management at runtime.

In this dissertation, I present multiple fast yet accurate ML models covering a wide range of chip design stages from the register-transfer level (RTL) to sign-off, solving primary chip-design problems about power, timing, interconnect, IR drop, routability, and design flow tuning. Targeting the RTL stage, I present APOLLO, a fully automated power modeling framework. It constructs an accurate per-cycle power model by extracting the most power-correlated signals. The model can be further implemented on chip for runtime power management with unprecedented low hardware costs. Targeting gate-level netlist, I present Net2 for early estimations on post-placement wirelength. It further enables more accurate timing analysis without actual physical design information. Targeting circuit layout, I present RouteNet for early routability prediction. As the first deep learning-based routability estimator, some feature-extraction and model-design principles proposed in it are widely adopted by later works. I also present PowerNet for fast IR drop estimation. It captures spatial and temporal information about power distribution with a customized CNN architecture. Last, besides targeting a single design step, I present FIST to efficiently tune design flow parameters during both logic synthesis and physical design.

Description
Dissertation
Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Computer engineering
Electronic Design Automation
Logic Synthesis
Machine Learning
Physical Design
Power
Routability
Permalink
https://hdl.handle.net/10161/25147
Citation
Xie, Zhiyao (2022). Intelligent Circuit Design and Implementation with Machine Learning. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25147.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University