Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Central Role for Hypoxia-inducible Transcription Factor Signaling in the Regulation of Skeletal Lineage Cells


Access is limited until:
2024-05-26
View / Download
175.5 Mb
Date
2022
Author
Guo, Wendi
Advisor
Wu, Colleen
Repository Usage Stats
60
views
0
downloads
Abstract

Osteoporosis and low bone density affect an estimated 54 million adults of 50 years and over in the United States, resulting in $19 billion in costs for osteoporosis-related bone breaks. Current treatments include the use of antiresorptive and anabolic drugs to decrease the rate of bone resorption and increase the rate of bone formation, respectively. However, these current treatments are unable to completely normalize skeletal integrity. As bone diseases become increasingly prevalent, there is an urgent need to identify novel therapies to improve quality of life and reduce economic burden on the healthcare system.

To identify novel therapeutic targets, we must first begin to understand the cellular complexity of the bone marrow niche and how cellular function is regulated within the bone tissue. Bone-resident cells, such as skeletal progenitors and their descendants, are critically influenced by extrinsic signals derived from the local microenvironment. Previous studies have identified hypoxia as a key microenvironment factor in bone. Thus, the ability to target the hypoxic bone marrow niche presents an attractive and untapped potential for regenerative medicine.

Much of the work investigating the role of hypoxia and HIF signaling have focused on mature osteoblast and chondrocyte populations. In contrast, studies investigating the contribution of HIF signaling on skeletal progenitors and marrow adipocyte populations are scarce. In this dissertation, I investigate the role of hypoxia and HIF signaling in skeletal lineage cells, chiefly skeletal progenitor cells and marrow adipogenic lineage cells. Using cellular, genetic, and pharmacological-based approaches, I characterize the roles of HIF-1α and HIF-2α in both homeostatic and pathological contexts in the aforementioned cell populations.

First, I propose an optimized cell-based system to investigate the function of skeletal progenitors in vitro. Here, I highlight the limitations of current in vitro isolation techniques and introduce a relatively simple method of bone marrow stromal cell purification using hypoxia. Using this system, I assess how skeletal progenitors respond to hypoxic cues and interrogate skeletal progenitor cell differentiation and functional responses in my subsequent research. Next, using genetic and pharmacological approaches, I investigate the role of HIF-2α in bone formation following radiation-injury where I identify HIF-2α as a negative regulator of bone recovery. Additionally, with the assistance of my collaborators, I develop and characterize a bone-targeting nanocarrier to ameliorate radiation-induced bone loss. Lastly, I detail early work I conducted to investigate the role of HIF signaling in marrow adipogenic lineage cells. Here, I establish and characterize animal models to determine how hypoxia and HIF signaling influences adipogenic lineage commitment and expansion in an early and mature marrow adipogenic population.

In summary, this dissertation aims to expand our limited understanding on how the hypoxic bone microenvironment and HIF signaling regulate skeletal lineage cells in vivo, with a special focus on skeletal progenitor and marrow adipogenic populations. In terms of boarder impacts, understanding the signaling networks that regulate bone homeostasis and recovery processes will not only expand our basic understanding of the molecular mechanisms underlying skeletal development, but also provide novel insights for developing therapies to treat bone loss.

Description
Dissertation
Type
Dissertation
Department
Pharmacology
Subject
Pharmacology
Cellular biology
Molecular biology
Bone
HIF signaling
Hypoxia
Nanotechnology
Radiation
Skeletal stem cell
Permalink
https://hdl.handle.net/10161/25167
Citation
Guo, Wendi (2022). A Central Role for Hypoxia-inducible Transcription Factor Signaling in the Regulation of Skeletal Lineage Cells. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25167.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University