Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lasing From Single Film-Coupled Nanoparticles

Thumbnail
View / Download
13.9 Mb
Date
2022
Author
Deputy, Xander
Advisor
Smith, David R
Repository Usage Stats
39
views
50
downloads
Abstract

Plasmonic nanostructures and metamaterials have found many applications as small-scale sources of controllable emission. Of particular interest is utilizing these types of structures as potential coherent radiation sources. Plasmonic Film-coupled Nanoparticles(FCNP), or nanopatch antennas, are good candidates for low-threshold, room-temperature nanolasing that can be predicted analytically. In this dissertation, I present results from multiphysical numerical models used to validate the predictions of a recent analytical theory, using optical pump intensity, population inversion, and pump photon count as metrics of lasing threshold. I show that a single cylindrical nanopatch antenna made of silver with an embedded fluorescent dye is capable of lasing at a threshold on the order of $10^4$ W/cm$^2$. I go beyond the hypotheses of the theoretical model by investigating the impact of spectrally non-separated absorption and emission transitions through the influence of lasing signal/absorption line and pump/emission line interactions. Furthermore, I tighten the model constraints and analytical predictions to facilitate experimental verification and ultimately demonstrate predicted lasing behavior. Thresholds on the order of $10^5$ W/m$^2$ are verified from fabricated experimental samples through spectral and coherence measurements of emission as a function of incident optical pump intensity from single film-coupled nanocubes with a variety of embedded dyes corresponding favorable geometric and material parameters. Agreement between analytically predicted thresholds and experimentally measured thresholds validates the previously developed theory and demonstrates the utility of the single film-coupled nanoparticle platform for lasing.

Description
Dissertation
Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Optics
Nanoscience
Engineering
Film-coupled nanoparticles
Nanocavity
Nanolaser
Plasmonics
Permalink
https://hdl.handle.net/10161/25246
Citation
Deputy, Xander (2022). Lasing From Single Film-Coupled Nanoparticles. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25246.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University