Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MULTI STAGE HEAVY QUARK TRANSPORT IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS

Thumbnail
View / Download
24.3 Mb
Date
2022
Author
Fan, Wenkai
Advisor
Bass, Steffen A
Repository Usage Stats
48
views
13
downloads
Abstract

The quark-gluon plasma (QGP) is one of the most interesting forms of matter providing us with insight on quantum chromodynamics (QCD) and the early universe. It is believed that the heavy-ion collision experiments at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have created the QGP medium by colliding two heavy nuclei at nearly the speed of light. Since the collision happens really fast, we can not observe the QGP directly. Instead, we look at the hundreds or even thousands of final hadrons coming out of the collision. In particular, jet and heavy flavor observables are excellent probes of the transport properties of such a medium. On the theoretical side, computational models are essential to make the connections between the final observables and the plasma. Previously studies have em-ployed a comprehensive multistage modeling approach of both the probes and the medium. In this dissertation, heavy quarks are investigated as probes of the QGP. First, the framework that describes the evolution of both soft and hard particles during the collision are discussed, which include initial condition, hydrodynamical expansion, parton transport, hadronization, and hadronic rescattering. It has recently been organized into the Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE) framework, which allows people to study heavy-ion collision in a more systematic manner. To study the energy loss of hard partons inside the QGP medium, the linear Boltzmann transport model (LBT) and the MATTER formalism are combined and have achieved a simultaneous description of both charged hadron, D meson, and inclusive jet observables. To further extract the transport coefficients, a Bayesian analysis is conducted which constrains the parameters in the transport models.

Description
Dissertation
Type
Dissertation
Department
Physics
Subject
Particle physics
Nuclear physics and radiation
Computational physics
Permalink
https://hdl.handle.net/10161/25843
Citation
Fan, Wenkai (2022). MULTI STAGE HEAVY QUARK TRANSPORT IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25843.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University