Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Connecting Density Functional Theory and Green's Function Theory


Access is limited until:
2024-09-16
Files
Li_duke_0066D_16976.pdf
1.6 Mb
Li_duke_0066D_17/si.pdf
606.3 Kb
Date
2022
Author
Li, Jiachen
Advisor
Yang, Weitao
Repository Usage Stats
96
views
34
downloads
Abstract

Developing accurate and efficient theoretical approaches to describe the electronic structure has been a long-standing task in quantum chemistry. The main workhouse in quantum chemistry, density functional theory (DFT), has been widely used because of the good accuracy and the affordable computational cost. However, the applicability of commonly used density functional approximations (DFAs) is limited by intrinsic problems such as the delocalization error. Green's function theory that recently has gained increasing attention is shown to outperform the Kohn-Sham DFT approach on many aspects but is also computationally demanding. In this work, DFT and Green's function theory are connected to develop accurate and robust approaches for describing both ground state and excited state properties. For ground state calculations, the renormalized singles (RS) Green's function that captures all singles contributions from the KS Green's function is applied in the GW and the T-matrix approximation to predict accurate quasiparticle (QP) energies. GRSWRS and GRSTRS are shown to outperform over commonly used G0W0 and G0T0 for predicting ionization potentials (IPs) and core-level binding energies (CLBEs). The RS with correlation (RSc) Green's function that also includes higher order contributions in GW is shown to provide further improvements over GRSWRS. The concept of RS has also been used in the multireference DFT approach, which describes strongly correlated systems. We also provide an analytical approach to calculate QP energies of DFAs that can be expressed as a functional of the non-interacting Green's function. For excited state calculations, we combine localized orbital scaling correction (LOSC) with Bethe-Salpeter equation (BSE) to calculate excitation energies of molecular systems. QP energies from LOSC that systematically eliminates the delocalization error are used in BSE, which bypasses the expensive GW calculations. BSE/LOSC is shown to predict accurate excitation energies of valence, charge transfer and Rydberg excitations. We also combine the RS Green's function with BSE. BSE/GRSWRS is shown to provide a comparable accuracy to the computationally expensive BSE/evGW. We show that combining the merit of DFT and Green's function theory leads to accurate and efficient theoretical approaches for describing both the ground state and the excited state.

Description
Dissertation
Type
Dissertation
Department
Chemistry
Subject
Chemistry
Density Functional Theory
Green's Function Theory
Quantum Chemistry
Theoretical Chemistry
Permalink
https://hdl.handle.net/10161/25846
Citation
Li, Jiachen (2022). Connecting Density Functional Theory and Green's Function Theory. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25846.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University