Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stromal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in Glioblastoma

Thumbnail
View / Download
6.2 Mb
Date
2022
Author
Tomaszewski, William Henry
Advisors
Sampson, John
Gunn, Michael
Repository Usage Stats
52
views
68
downloads
Abstract

Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME). GBM is universally lethal and remains highly refractory to immunotherapy, including immune checkpoint blockade (ICB). Resistance to ICB is a central issue in GBM and is thought to be primarily driven by tumor-imposed immune dysfunction. Here, however, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a novel driver of ICB resistance. CaMKK2 is highly expressed in myeloid cells and neurons and is associated with worsened survival in patients with GBM. Using CaMKK2-deficient preclinical murine models, we determine that host CaMKK2 expression reduces survival and promotes ICB resistance in a T cell-dependent manner. Single-cell RNA-sequencing, flow cytometric profiling, and immunofluorescence staining of immune cells in the tumor reveal that CaMKK2 expression is associated with several pro-tumor, ICB resistance-associated immune phenotypes. For instance, CaMKK2 promotes terminal exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance and interactions with myeloid cells. CaMKK2 also maintains myeloid cells in an Apolipoprotein E+, disease-associated microglia-like phenotype, which is associated with ICB resistance. Conversely, CaMKK2 deficiency permits the programming of tumor-associated macrophages (TAMs) to a dendritic cell (DC)-like phenotype that is associated with ICB response. Finally, we determine that it is neuronal CaMKK2 expression, specifically, that is required for maintaining the ICB resistance-associated MHC-IIlow TAM phenotype. Our findings reveal CaMKK2 as a novel contributor to ICB resistance, primarily via non-hematopoietic cells, in GBM and additionally newly identify neurons as a critical driver of pro-tumor immune phenotypes within the GBM TME.

Description
Dissertation
Type
Dissertation
Department
Immunology
Subject
Immunology
Oncology
Checkpoint Blockade
Glioblastoma
Immunotherapy
Macrophages
Therapeutic Resistance
Tumor Microenvironment
Permalink
https://hdl.handle.net/10161/25849
Citation
Tomaszewski, William Henry (2022). Stromal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in Glioblastoma. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25849.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University