Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Surgical technique for development of a clinically-representative ventral hernia repair infection rat model.

Thumbnail
View / Download
1.6 Mb
Date
2020-01
Authors
Anastasio, Albert Thomas
Van Eps, Jeffrey L
Fernandez-Moure, Joseph S
Repository Usage Stats
3
views
0
downloads
Abstract
The animal model of infection following ventral hernia repair (VHR) has previously been utilized in exploring treatments and innovative therapies, such as implantation of biologic mesh imbedded with various anti-bacterial properties. The rat model has been utilized most commonly, but prior work has failed to recreate an adequately clinically representative model of infection following VHR. Additionally, there is lack of standardization of mesh infection severity across existing literature. Therefore, the aim of this paper is to describe the creation of a clinically representative VHR infection model utilizing an index procedure where a hernia defect is created followed by a VHR using biologic mesh and subsequent infectious agent inoculation. Additionally, we describe the development of a standardization index to quantify severity of mesh infection: the Mesh Infection Severity Index (MISI).•Our protocol involves two procedures, an index procedure where a hernia model is created, and a subsequent procedure where an infectious inoculant is introduced.•We describe the MISI, a standardization tool we hope will allow for ease of cross-institutional data assessment.•In summary, our protocol not only serves as a more clinically representative animal model, but also includes a novel metric to standardize mesh infection severity.
Type
Journal article
Subject
Hernia
Infection
Mesh
Permalink
https://hdl.handle.net/10161/26288
Published Version (Please cite this version)
10.1016/j.mex.2020.100887
Publication Info
Anastasio, Albert Thomas; Van Eps, Jeffrey L; & Fernandez-Moure, Joseph S (2020). Surgical technique for development of a clinically-representative ventral hernia repair infection rat model. MethodsX, 7. pp. 100887. 10.1016/j.mex.2020.100887. Retrieved from https://hdl.handle.net/10161/26288.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Fernandez-Moure

Joseph Steven Fernandez-Moure

Assistant Professor of Surgery
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University