Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics of a qubit in a high-impedance transmission line from a bath perspective

Thumbnail
View / Download
673.8 Kb
Date
2016-03-28
Authors
Bera, S
Baranger, HU
Florens, S
Repository Usage Stats
2
views
0
downloads
Abstract
We investigate the quantum dynamics of a generic model of light-matter interaction in the context of high-impedance waveguides, focusing on the behavior of the photonic states generated in the waveguide. The model treated consists simply of a two-level system coupled to a bosonic bath (the Ohmic spin-boson model). Quantum quenches as well as scattering of an incident coherent pulse are studied using two complementary methods. First, we develop an approximate ansatz for the electromagnetic waves based on a single multimode coherent state wave function; formally, this approach combines in a single framework ideas from adiabatic renormalization, the Born-Markov approximation, and input-output theory. Second, we present numerically exact results for scattering of a weak intensity pulse by using numerical renormalization group (NRG) calculations. NRG provides a benchmark for any linear response property throughout the ultrastrong-coupling regime. We find that in a sudden quantum quench, the coherent state approach produces physical artifacts, such as improper relaxation to the steady state. These previously unnoticed problems are related to the simplified form of the ansatz that generates spurious correlations within the bath. In the scattering problem, NRG is used to find the transmission and reflection of a single photon, as well as the inelastic scattering of that single photon. Simple analytical formulas are established and tested against the NRG data that predict quantitatively the transport coefficients for up to moderate environmental impedance. These formulas resolve pending issues regarding the presence of inelastic losses in the spin-boson model near absorption resonances, and could be used for comparison to experiments in Josephson waveguide quantum electrodynamics. Finally, the scattering results using the coherent state wave-function approach are compared favorably to the NRG results for very weak incident intensity. We end our study by presenting results at higher power where the response of the system is nonlinear.
Type
Journal article
Subject
Science & Technology
Physical Sciences
Optics
Physics, Atomic, Molecular & Chemical
Physics
VARIATIONAL CALCULATION
SYSTEM
Permalink
https://hdl.handle.net/10161/26457
Published Version (Please cite this version)
10.1103/PhysRevA.93.033847
Publication Info
Bera, S; Baranger, HU; & Florens, S (2016). Dynamics of a qubit in a high-impedance transmission line from a bath perspective. Physical Review A, 93(3). 10.1103/PhysRevA.93.033847. Retrieved from https://hdl.handle.net/10161/26457.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Baranger

Harold U. Baranger

Professor of Physics
The broad focus of Prof. Baranger's group is quantum open systems at the nanoscale, particularly the generation of correlation between particles in such systems. Fundamental interest in nanophysics-- the physics of small, nanometer scale, bits of solid-- stems from the ability to control and probe systems on length scales larger than atoms but small enough that the averaging inherent in bulk properties has not yet occurred. Using this ability, entirely unanticipated phenomena ca
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University