Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting photon-photon interactions in a superconducting circuit

Thumbnail
View / Download
1.4 Mb
Date
2015-10-06
Authors
Jin, LJ
Houzet, M
Meyer, JS
Baranger, HU
Hekking, FWJ
Repository Usage Stats
3
views
0
downloads
Abstract
A local interaction between photons can be engineered by coupling a nonlinear system to a transmission line. The required transmission line can be conveniently formed from a chain of Josephson junctions. The nonlinearity is generated by side-coupling this chain to a Cooper pair box. We propose to probe the resulting photon-photon interactions via their effect on the current-voltage characteristic of a voltage-biased Josephson junction connected to the transmission line. Considering the Cooper pair box to be in the weakly anharmonic regime, we find that the dc current through the probe junction yields features around the voltages 2eV=n ωs, where ωs is the plasma frequency of the superconducting circuit. The features at n≥2 are a direct signature of the photon-photon interaction in the system.
Type
Journal article
Subject
Science & Technology
Technology
Physical Sciences
Materials Science, Multidisciplinary
Physics, Applied
Physics, Condensed Matter
Materials Science
Physics
QUANTUM
Permalink
https://hdl.handle.net/10161/26458
Published Version (Please cite this version)
10.1103/PhysRevB.92.134503
Publication Info
Jin, LJ; Houzet, M; Meyer, JS; Baranger, HU; & Hekking, FWJ (2015). Detecting photon-photon interactions in a superconducting circuit. Physical Review B - Condensed Matter and Materials Physics, 92(13). 10.1103/PhysRevB.92.134503. Retrieved from https://hdl.handle.net/10161/26458.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Baranger

Harold U. Baranger

Professor of Physics
The broad focus of Prof. Baranger's group is quantum open systems at the nanoscale, particularly the generation of correlation between particles in such systems. Fundamental interest in nanophysics-- the physics of small, nanometer scale, bits of solid-- stems from the ability to control and probe systems on length scales larger than atoms but small enough that the averaging inherent in bulk properties has not yet occurred. Using this ability, entirely unanticipated phenomena ca
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University