Detecting photon-photon interactions in a superconducting circuit

Loading...
Thumbnail Image

Date

2015-10-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

10
views
7
downloads

Citation Stats

Abstract

A local interaction between photons can be engineered by coupling a nonlinear system to a transmission line. The required transmission line can be conveniently formed from a chain of Josephson junctions. The nonlinearity is generated by side-coupling this chain to a Cooper pair box. We propose to probe the resulting photon-photon interactions via their effect on the current-voltage characteristic of a voltage-biased Josephson junction connected to the transmission line. Considering the Cooper pair box to be in the weakly anharmonic regime, we find that the dc current through the probe junction yields features around the voltages 2eV=n ωs, where ωs is the plasma frequency of the superconducting circuit. The features at n≥2 are a direct signature of the photon-photon interaction in the system.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1103/PhysRevB.92.134503

Publication Info

Jin, LJ, M Houzet, JS Meyer, HU Baranger and FWJ Hekking (2015). Detecting photon-photon interactions in a superconducting circuit. Physical Review B - Condensed Matter and Materials Physics, 92(13). 10.1103/PhysRevB.92.134503 Retrieved from https://hdl.handle.net/10161/26458.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.