Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States

Thumbnail
View / Download
2.2 Mb
Date
2022-12-15
Authors
Weinberg, R
Coyte, R
Wang, Z
Das, D
Vengosh, A
Repository Usage Stats
9
views
13
downloads
Abstract
Subsurface coal mining often induces the formation of acid mine drainage (AMD) in active and abandoned coal mines while coal combustion generates coal combustion residuals (CCR), including fly ash (FA), with elevated levels of toxic metals. Decades of AMD and CCR production have caused major environmental and human health impacts. Given the typically elevated level of oxides in FA, previous studies have examined its potential to neutralize AMD and remove the associated metals. While the neutralization of AMD through reaction with FA has been demonstrated to successfully remove cationic metals, the fate of oxyanion forming elements are less well studied and is the focus of this study. Here we conducted 49 different experiments in which simulated AMD solutions were interacted with representative U.S. (n = 7) and Indian (n = 6) FA samples through controlled liquid to solid ratios in short-term (24 h) and long-term (up to 5 weeks) lab-scale experiments. We show that Class-F FA, originating from Gondwana and Northeastern Tertiary coals in India, has limited neutralization capacity, while Class-C FA, with high CaO and MgO contents from Powder River coals in the U.S. has the greatest AMD neutralization capacity among the studied fly ashes. The neutralization experiments show that AMD-FA reactions cause the removal of cationic elements (i.e., Fe, Mn, and Al) from solution, while at the same time, leaching oxyanion forming elements (i.e., As, Se, Mo, Cr, B, Tl, and Sb) from the FA, increasing the potential environmental risks from the treated leachates. The magnitude of mobilization of these elements depends on their concentrations in the FA and the pH conditions. We show that using FA from the Appalachian and Illinois coals efficiently neutralizes AMD, but also results in secondary contamination of the treated effluents with oxyanion forming elements to levels exceeding drinking water and ecological standards, which could contaminate the ambient environment, whereas neuralization with Powder River Basin Class-C FA induces only limited contamination.
Type
Journal article
Subject
Coal ash
Acid mine drainage
Metals
Metalloids
Neutralization
Environmental management
Permalink
https://hdl.handle.net/10161/26629
Published Version (Please cite this version)
10.1016/j.fuel.2022.125675
Publication Info
Weinberg, R; Coyte, R; Wang, Z; Das, D; & Vengosh, A (2022). Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel, 330. pp. 125675-125675. 10.1016/j.fuel.2022.125675. Retrieved from https://hdl.handle.net/10161/26629.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Vengosh

Avner Vengosh

Nicholas Distinguished Professor of Environmental Quality
Avner Vengosh is a Duke University Distinguished Professor of Environmental Quality at the Nicholas School of the Environment.  Professor Vengosh and his team have studied the energy-water nexus, conducting pioneer research on the impact of hydraulic fracturing and coal ash disposal on the quantity and quality of water resources in the U.S. and China. He has also investigated the sources and mechanisms of water contamination in numerous countries across the globe, including salinity and
Wang

Zhen Wang

Student
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University