Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Separating Features from Noise with Persistence and Statistics

Thumbnail
View / Download
2.5 Mb
Date
2010
Author
Wang, Bei
Advisor
Edelsbrunner, Herbert
Repository Usage Stats
352
views
496
downloads
Abstract

In this thesis, we explore techniques in statistics and persistent homology, which detect features among data sets such as graphs, triangulations and point cloud. We accompany our theorems with algorithms and experiments, to demonstrate their effectiveness in practice.

We start with the derivation of graph scan statistics, a measure useful to assess the statistical significance of a subgraph in terms of edge density. We cluster graphs into densely-connected subgraphs based on this measure. We give algorithms for finding such clusterings and experiment on real-world data.

We next study statistics on persistence, for piecewise-linear functions defined on the triangulations of topological spaces. We derive persistence pairing probabilities among vertices in the triangulation. We also provide upper bounds for total persistence in expectation.

We continue by examining the elevation function defined on the triangulation of a surface. Its local maxima obtained by persistence pairing are useful in describing features of the triangulations of protein surfaces. We describe an algorithm to compute these local maxima, with a run-time ten-thousand times faster in practice than previous method. We connect such improvement with the total Gaussian curvature of the surfaces.

Finally, we study a stratification learning problem: given a point cloud sampled from a stratified space, which points belong to the same strata, at a given scale level? We assess the local structure of a point in relation to its neighbors using kernel and cokernel persistent homology. We prove the effectiveness of such assessment through several inference theorems, under the assumption of dense sample. The topological inference theorem relates the sample density with the homological feature size. The probabilistic inference theorem provides sample estimates to assess the local structure with confidence. We describe an algorithm that computes the kernel and cokernel persistence diagrams and prove its correctness. We further experiment on simple synthetic data.

Type
Dissertation
Department
Computer Science
Subject
Computer Science
Theoretical Mathematics
Statistics
clustering
computational geometry
computational topology
persistence homology
spatial scan statistics
stratification
Permalink
https://hdl.handle.net/10161/2982
Citation
Wang, Bei (2010). Separating Features from Noise with Persistence and Statistics. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/2982.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University