Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cancer Stem Cells in Brain Tumors: Identification of Critical Biological Effectors

Thumbnail
View / Download
18.6 Mb
Date
2010
Author
Eyler, Christine Elissa
Advisor
Rich, Jeremy N
Repository Usage Stats
414
views
209
downloads
Abstract

Human cancer is a leading cause of morbidity and mortality in the developed world. Contrary to the classical model in which tumors are homogeneously composed of malignant cells, accumulating evidence suggests that subpopulations of highly malignant cells play a dominant role in tumor initiation and growth. These cells have the capacity for prolonged self-renewal and they efficiently generate tumors that phenotypically resemble the parental tumor in transplantation assays. Such characteristics are reminiscent of normal stem cells, and these potently tumorigenic cells have therefore been called cancer stem cells (CSCs). Importantly, studies have shown that CSCs are central mediators of therapeutic resistance, tumor angiogenesis, and metastatic or invasive potential. In the case of malignant glioma, poor patient survival and the paucity of effective therapeutic advances have been attributed to inherent CSC growth potential and treatment resistance, respectively. For this reason, there is great interest in elucidating the molecular features of CSCs, with the ultimate hope of developing CSC-directed therapies.

Given the overlap between the highly malignant characteristics exhibited by CSCs and those promoted by the PI3K/AKT pathway, we hypothesized that AKT activity within CSCs could represent a reasonable therapeutic target for CSC-directed therapies. Indeed, a pharmacological inhibitor of AKT preferentially targeted glioma CSCs versus non-CSCs and was associated with increased apoptosis and impaired tumorigenesis. These data suggest that interventions targeting AKT could effectively target glioma CSCs.

Quite distinct from the PI3K/AKT pathway, we hypothesized that the pro-survival and pro-growth features of nitric oxide (NO) might also operate in glioma CSCs. Our experiments found that glioma CSCs produced more NO than non-CSCs, which is attributed to inducible nitric oxide synthase (iNOS) expression and activity within the CSCs. Interference with iNOS activity or expression, as well as selective NO consumption, attenuated CSC growth and tumorigenicity. The mechanism behind iNOS-mediated survival appears to involve, at least in part, suppression of the cell cycle inhibitor CDA1. iNOS inhibition decreased glioma growth in murine xenografts and human expression studies demonstrate an inverse correlation between iNOS expression and patient survival.

To more fully evaluate the biological effects of NO in CSCs, we designed a novel strategy to consume NO within mammalian cells through heterologous expression of E. coli flavohemoglobin (FlavoHb). This enzyme is a highly specific NO dioxygenase which converts NO to inert nitrate several orders of magnitude faster than iNOS synthesizes NO. Expression of FlavoHb in mammalian cells is therefore a novel and functional tool to interrogate the role of NO in cellular stress and signaling.

In summary, this doctoral thesis focuses on several molecular characteristics that define malignant CSCs and describes a novel strategy for studying NO, which is one of the CSC-specific molecular effectors.

Type
Dissertation
Department
Molecular Cancer Biology
Subject
Biology, Cell
Biology, Molecular
AKT
Cancer stem cell
Flavohemoglobin
Glioma
Nitric Oxide
Permalink
https://hdl.handle.net/10161/3036
Citation
Eyler, Christine Elissa (2010). Cancer Stem Cells in Brain Tumors: Identification of Critical Biological Effectors. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3036.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University