Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient selection of disambiguating actions for stereo vision

Thumbnail
View / Download
33.9 Mb
Date
2010
Author
Schaeffer, Monika
Advisors
Parr, Ronald
Tomasi, Carlo
Welch, Greg
Repository Usage Stats
266
views
126
downloads
Abstract
In many domains that involve the use of sensors, such as robotics or sensor networks, there are opportunities to use some form of active sensing to disambiguate data from noisy or unreliable sensors. These disambiguating actions typically take time and expend energy. One way to choose the next disambiguating action is to select the action with the greatest expected entropy reduction, or information gain. In this work, we consider active sensing in aid of stereo vision for robotics. Stereo vision is a powerful sensing technique for mobile robots, but it can fail in scenes that lack strong texture. In such cases, a structured light source, such as vertical laser line, can be used for disambiguation. By treating the stereo matching problem as a specially structured HMM-like graphical model, we demonstrate that for a scan line with n columns and maximum stereo disparity d, the entropy minimizing aim point for the laser can be selected in O(nd) time - cost no greater than the stereo algorithm itself. A typical HMM formulation would suggest at least O(nd2) time for the entropy calculation alone.
Type
Master's thesis
Department
Computer Science
Permalink
https://hdl.handle.net/10161/3064
Citation
Schaeffer, Monika (2010). Efficient selection of disambiguating actions for stereo vision. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/3064.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University