Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extraction of Hot QCD Matter Transport Coefficients utilizing Microscopic Transport Theory

Thumbnail
View / Download
2.4 Mb
Date
2010
Author
Demir, Nasser Soliman
Advisor
Bass, Steffen A.
Repository Usage Stats
445
views
555
downloads
Abstract

Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) are thought to have produced a state of matter called the Quark-Gluon-Plasma (QGP). The QGP forms when nuclear matter governed by Quantum Chromodynamics (QCD) reaches a temperature and baryochemical potential necessary to achieve the transition of hadrons (bound states of quarks and gluons) to {it deconfined} quarks and gluons. Such conditions have been achieved at RHIC, and the resulting QGP created exhibits properties of a near perfect fluid. In particular, strong evidence shows that the QGP exhibits a very small shear viscosity to entropy density ratio &eta/s, near the lower bound predicted for that quantity by Anti-deSitter space/Conformal Field Theory (AdS/CFT) methods of &eta/s = $hbar$/ 4 &pi $k_B$ where $hbar$ is Planck's constant and $k_B$ is Boltzmann's constant. As the produced matter expands and cools, it evolves through a phase described by a hadron gas with rapidly increasing $eta/s$.

This thesis presents robust calculations of $eta/s$ for hadronic and partonic media as a function of temperature using the Green-Kubo formalism. An analysis is performed for the behavior of $eta/s$ to mimic situations of the hadronic media at RHIC evolving out of chemical equilibrium, and systematic uncertainties are assessed for our method. In addition, preliminary results are presented for the bulk viscosity to entropy density ratio $zeta/s$, whose behavior is not well-known in a relativistic heavy ion collisions. The diffusion coefficient for baryon number is investigated, and an algorithm is presented to improve upon the previous work of investigation of heavy quark diffusion in a thermal QGP.

By combining the results of my investigations for $eta/s$ from our microscopic transport models with what is currently known from the experimental results on elliptic flow from RHIC, I find that the trajectory of $eta/s$ in a heavy ion collision has a rich structure, especially near the deconfinement transition temperature $T_c$. I have helped quantify the viscous hadronic effects to enable investigators to constrain the value of $eta/s$ for the QGP created at RHIC.

Type
Dissertation
Department
Physics
Subject
Physics, Nuclear
Physics, Theory
hadron gas
microscopic
QCD
quark gluon plasma
transport coefficients
Permalink
https://hdl.handle.net/10161/3100
Citation
Demir, Nasser Soliman (2010). Extraction of Hot QCD Matter Transport Coefficients utilizing Microscopic Transport Theory. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3100.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University