Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Time-Varying Networks with Applications to Neural Flow and Genetic Regulation

Thumbnail
View / Download
53.6 Mb
Date
2010
Author
Robinson, Joshua Westly
Advisor
Hartemink, Alexander J
Repository Usage Stats
322
views
158
downloads
Abstract

Many biological processes are effectively modeled as networks, but a frequent assumption is that these networks do not change during data collection. However, that assumption does not hold for many phenomena, such as neural growth during learning or changes in genetic regulation during cell differentiation. Approaches are needed that explicitly model networks as they change in time and that characterize the nature of those changes.

In this work, we develop a new class of graphical models in which the conditional dependence structure of the underlying data-generation process is permitted to change over time. We first present the model, explain how to derive it from Bayesian networks, and develop an efficient MCMC sampling algorithm that easily generalizes under varying levels of uncertainty about the data generation process. We then characterize the nature of evolving networks in several biological datasets.

We initially focus on learning how neural information flow networks change in songbirds with implanted electrodes. We characterize how they change in response to different sound stimuli and during the process of habituation. We continue to explore the neurobiology of songbirds by identifying changes in neural information flow in another habituation experiment using fMRI data. Finally, we briefly examine evolving genetic regulatory networks involved in Drosophila muscle differentiation during development.

We conclude by suggesting new experimental directions and statistical extensions to the model for predicting novel neural flow results.

Type
Dissertation
Department
Computer Science
Subject
Computer Science
Neurosciences
Bayesian network
Genetic regulatory network
MCMC
Neural flow network
Sampling
Time-series
Permalink
https://hdl.handle.net/10161/3109
Citation
Robinson, Joshua Westly (2010). Modeling Time-Varying Networks with Applications to Neural Flow and Genetic Regulation. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3109.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University