Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells

Thumbnail
View / Download
521.4 Kb
Date
2011-01-01
Authors
Allen, Kyle D
Chen, Jun
Fitch, Robert
Gabr, Mostafa A
Helbling, Antonia R
Jing, Liufang
Richardson, William J
Setton, Lori A
Shamji, Mohammed F
Sinclair, S Michael
Show More
(10 total)
Repository Usage Stats
363
views
552
downloads
Abstract
Interleukin-17 (IL-17) is a cytokine recently shown to be elevated, along with interferon-γ (IFNγ) and tumor necrosis factor (TNFα), in degenerated and herniated intervertebral disc (IVD) tissues, suggesting a role for these cytokines in intervertebral disc disease. The objective of our study was to investigate the involvement of IL-17 and costimulants IFNγ and TNFα in intervertebral disc pathology. Cells were isolated from anulus fibrosus and nucleus pulposus tissues of patients undergoing surgery for intervertebral disc degeneration or scoliosis. The production of inflammatory mediators, nitric oxide (NOx), prostaglandin E2 (PGE2) and interleukin-6 (IL-6), as well as intercellular adhesion molecule (ICAM-1) expression, were quantified for cultured cells following exposure to IL-17, IFNγ and TNFα. Intervertebral disc cells exposed to IL-17, IFNγ or TNFα showed a remarkable increase in inflammatory mediator release and ICAM-1 expression (GLM and ANOVA, p<0.05). Addition of IFNγ or TNFα to IL-17 demonstrated a synergistic increase in inflammatory mediator release, and a marked increase in ICAM-1 expression. These findings suggest that IVD cells not only respond with a catabolic phenotype to IL-17 and costimulants IFNγ and TNFα, but also express surface ligands with consequent potential to recruit additional lymphocytes and immune cells to the IVD microenvironment. IL-17 may be an important regulator of inflammation in the IVD pathologies.
Type
Journal article
Subject
intervertebral disc, cytokine, inflammation, interleukin-17, ICAM-1
Permalink
https://hdl.handle.net/10161/3167
Published Version (Please cite this version)
10.1002/jor.2120
Publication Info
Allen, Kyle D; Chen, Jun; Fitch, Robert; Gabr, Mostafa A; Helbling, Antonia R; Jing, Liufang; ... Sinclair, S Michael (2011). Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells. 10.1002/jor.2120. Retrieved from https://hdl.handle.net/10161/3167.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Richardson

William James Richardson

Professor of Orthopaedic Surgery
1. Current research includes investigation of biomechanical aspects of cervical injury with head impact. This involves cadaveric work with high-speed photography and load cells to ascertain the mechanism for spinal fractures. 2. An animal model is being used to evaluate the biomechanics of cervical laminectomy versus laminoplasty compared to the normal spine. A portion of the animals are developing myelopathy secondary to instability after the surgical procedure and this is bei
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University