Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of 3-panel and 4-panel microscale ionization sources

Thumbnail
View / Download
842.1 Kb
Date
2010-06-15
Authors
Natarajan, S
Parker, CB
Piascik, JR
Gilchrist, KH
Stoner, BR
Glass, JT
Repository Usage Stats
224
views
436
downloads
Abstract
Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10-4 to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10× improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers. © 2010 American Institute of Physics.
Type
Journal article
Permalink
https://hdl.handle.net/10161/3384
Published Version (Please cite this version)
10.1063/1.3429220
Publication Info
Natarajan, S; Parker, CB; Piascik, JR; Gilchrist, KH; Stoner, BR; & Glass, JT (2010). Analysis of 3-panel and 4-panel microscale ionization sources. Journal of Applied Physics, 107(12). pp. 124508. 10.1063/1.3429220. Retrieved from https://hdl.handle.net/10161/3384.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Glass

Jeffrey Glass

Professor of Electrical and Computer Engineering
Jeffrey T. Glass is a Professor in the Department of Electrical and Computer Engineering and Director of the Institute for Enterprise Engineering. He holds the Hogg Family endowed chair in Engineering Management and Entrepreneurship. Formerly, he was the Co-Director of The Institute for the Integration of Management and Engineering at Case Western Reserve University (CWRU) and held the Joseph F. Toot, Jr. endowed chair in the Case School of Engineering. Prior to these university appointment

Charles Parker

Senior Laboratory Administrator
Stoner

Brian R. Stoner

Research Professor in the Department of Electrical and Computer Engineering
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University