Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Persistent Cohomology Operations

Thumbnail
View / Download
574.0 Kb
Date
2011
Author
HB, Aubrey Rae
Advisor
Harer, John
Repository Usage Stats
605
views
1,406
downloads
Abstract

The work presented in this dissertation includes the study of cohomology and cohomological operations within the framework of Persistence. Although Persistence was originally defined for homology, recent research has developed persistent approaches to other algebraic topology invariants. The work in this document extends the field of persistence to include cohomology classes, cohomology operations and characteristic classes.

By starting with presenting a combinatorial formula to compute the Stiefel-Whitney homology class, we set up the groundwork for Persistent Characteristic Classes. To discuss persistence for the more general cohomology classes, we construct an algorithm that allows us to find the Poincar'{e} Dual to a homology class. Then, we develop two algorithms that compute persistent cohomology, the general case and one for a specific cohomology class. We follow this with defining and composing an algorithm for extended persistent cohomology.

In addition, we construct an algorithm for determining when a cohomology class is decomposible and compose it in the context of persistence. Lastly, we provide a proof for a concise formula for the first Steenrod Square of a given cohomology class and then develop an algorithm to determine when a cohomology class is a Steenrod Square of a lower dimensional cohomology class.

Type
Dissertation
Department
Mathematics
Subject
Mathematics
Algebraic Topology
Cohomomology Operations
Computational Topology
Persistent Homology
Permalink
https://hdl.handle.net/10161/3867
Citation
HB, Aubrey Rae (2011). Persistent Cohomology Operations. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3867.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University