Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Sparse Learning for High Dimensional Data

Thumbnail
View / Download
1.3 Mb
Date
2011
Author
Shi, Minghui
Advisor
Dunson, David B
Repository Usage Stats
1,112
views
551
downloads
Abstract

In this thesis, we develop some Bayesian sparse learning methods for high dimensional data analysis. There are two important topics that are related to the idea of sparse learning -- variable selection and factor analysis. We start with Bayesian variable selection problem in regression models. One challenge in Bayesian variable selection is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In the first part of this thesis, instead of using MCMC, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.

Besides the Bayesian stochastic search algorithms, there is a rich literature on shrinkage and variable selection methods for high dimensional regression and classification with vector-valued parameters, such as lasso (Tibshirani, 1996) and the relevance vector machine (Tipping, 2001). Comparing with the Bayesian stochastic search algorithms, these methods does not account for model uncertainty but are more computationally efficient. In the second part of this thesis, we generalize this type of ideas to matrix valued parameters and focus on developing efficient variable selection method for multivariate regression. We propose a Bayesian shrinkage model (BSM) and an efficient algorithm for learning the associated parameters .

In the third part of this thesis, we focus on the topic of factor analysis which has been widely used in unsupervised learnings. One central problem in factor analysis is related to the determination of the number of latent factors. We propose some Bayesian model selection criteria for selecting the number of latent factors based on a graphical factor model. As it is illustrated in Chapter 4, our proposed method achieves good performance in correctly selecting the number of factors in several different settings. As for application, we implement the graphical factor model for several different purposes, such as covariance matrix estimation, latent factor regression and classification.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Factor model
High dimensional Data
penalized marginal likelihood
Variable Selection
Permalink
https://hdl.handle.net/10161/3869
Citation
Shi, Minghui (2011). Bayesian Sparse Learning for High Dimensional Data. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3869.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University