Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic Microlensing: Mathematical Theory and Applications

View / Download
1.9 Mb
Date
2011
Author
Teguia, Alberto Mokak
Advisor
Petters, Arlie O
Repository Usage Stats
286
views
30
downloads
Abstract

Stochastic microlensing is a central tool in probing dark matter on galactic scales. From first principles, we initiate the development of a mathematical theory

of stochastic microlensing. We first construct a natural probability space for stochastic microlensing and characterize the general behaviour of the random time

delay functions' random critical sets. Next we study stochastic microlensing in two distinct random microlensing scenarios: The uniform stars' distribution with

constant mass spectrum and the spatial stars' distribution with general mass spectrum. For each scenario, we determine exact and asymptotic (in the large number

of point masses limit) stochastic properties of the random time delay functions and associated random lensing maps and random shear tensors, including their

moments and asymptotic density functions. We use these results to study certain random observables, such as random fixed lensed images, random bending angles,

and random magnifications. These results are relevant to the theory of random

fields and provide a platform for further generalizations as well as analytical limits for checking astrophysical studies of stochastic microlensing.

Continuing our development of a mathematical theory of stochastic microlensing, we study the stochastic version of the Image Counting Problem, first considered

in the non-random setting by Einstein and generalized by Petters. In particular, we employ the Kac-Rice formula and Morse theory to deduce general formulas for

the expected total number of images and the expected number of saddle images for a general random lensing scenario. We further

generalize these results by considering random sources defined on a countable compact covering of the light source plane. This is done to introduce the notion of

global expected number of positive parity images due to a general lensing map. Applying the result to the uniform stars' distribution random microlensing

scenario, we calculate the asymptotic global expected number of minimum images in the limit of an infinite number of stars. This global expectation is bounded,

while the global expected number of images and the global expected number of saddle images diverge as the order of the number of stars.

Finally, we outline a framework for the study of stochastic microlensing in the neighbourhood of lensed images. This framework is related to the study of the

local geometry of a random surface. In our case, the surface is non-Gaussian, and therefore standard literature on the subject does not apply. We explore the case

of a random gravitational field caused by a random star.

Type
Dissertation
Department
Mathematics
Subject
Mathematics
Physics
Asymptotics
Microlensing
Probability
Permalink
https://hdl.handle.net/10161/3875
Citation
Teguia, Alberto Mokak (2011). Stochastic Microlensing: Mathematical Theory and Applications. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3875.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University