Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Spectral Deferred Correction Method for Solving Cardiac Models

Thumbnail
View / Download
1.1 Mb
Date
2011
Author
Bowen, Matthew M.
Advisor
Schaeffer, David G.
Repository Usage Stats
451
views
559
downloads
Abstract

Many numerical approaches exist to solving models of electrical activity in the heart. These models consist of a system of stiff nonlinear ordinary differential equations for the voltage and other variables governing channels, with the voltage coupled to a diffusion term. In this work, we propose a new algorithm that uses two common discretization methods, operator splitting and finite elements. Additionally, we incorporate a temporal integration process known as spectral deferred correction. Using these approaches,

we construct a numerical method that can achieve arbitrarily high order in both space and time in order to resolve important features of the models, while gaining accuracy and efficiency over lower order schemes.

Our algorithm employs an operator splitting technique, dividing the reaction-diffusion systems from the models into their constituent parts.

We integrate both the reaction and diffusion pieces via an implicit Euler method. We reduce the temporal and splitting errors by using a spectral deferred correction method, raising the temporal order and accuracy of the scheme with each correction iteration.

Our algorithm also uses continuous piecewise polynomials of high order on rectangular elements as our finite element approximation. This approximation improves the spatial discretization error over the piecewise linear polynomials typically used, especially when the spatial mesh is refined.

As part of these thesis work, we also present numerical simulations using our algorithm of one of the cardiac models mentioned, the Two-Current Model. We demonstrate the efficiency, accuracy and convergence rates of our numerical scheme by using mesh refinement studies and comparison of accuracy versus computational time. We conclude with a discussion of how our algorithm can be applied to more realistic models of cardiac electrical activity.

Type
Dissertation
Department
Mathematics
Subject
Mathematics
cardiac models
spectral deferred correction
Permalink
https://hdl.handle.net/10161/3883
Citation
Bowen, Matthew M. (2011). A Spectral Deferred Correction Method for Solving Cardiac Models. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3883.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University